

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

ETH - Elektrozylinder

Parker High Force Electro Thrust Cylinder

ACHTUNG - VERANTWORTUNG DES ANWENDERS

VERSAGEN ODER UNSACHGEMÄßE AUSWAHL ODER UNSACHGEMÄßE VERWENDUNG DER HIERIN BESCHRIEBENEN PRODUKTE ODER ZUGEHÖRIGER TEILE KÖNNEN TOD, VERLETZUNGEN VON PERSONEN ODER SACHSCHÄDEN VERURSACHEN.

- Dieses Dokument und andere Informationen von der Parker-Hannifin Corporation, seinen Tochtergesellschaften und Vertragshändlern enthalten Produkt- oder Systemoptionen zur weiteren Untersuchung durch Anwender mit technischen Kenntnissen.
- Der Anwender ist durch eigene Untersuchung und Prüfung allein dafür verantwortlich, die endgültige Auswahl des Systems und der Komponenten zu treffen und sich zu vergewissern, dass alle Leistungs-, Dauerfestigkeits-, Wartungs-, Sicherheits- und Warnanforderungen der Anwendung erfüllt werden. Der Anwender muss alle Aspekte der Anwendung genau untersuchen, geltenden Industrienormen folgen und die Informationen in Bezug auf das Produkt im aktuellen Produktkatalog sowie alle anderen Unterlagen, die von Parker oder seinen Tochtergesellschaften oder Vertragshändlern bereitgestellt werden, zu beachten.
- Soweit Parker oder seine Tochtergesellschaften oder Vertragshändler Komponenten oder Systemoptionen basierend auf technischen Daten oder Spezifikationen liefern, die vom Anwender beigestellt wurden, ist der Anwender dafür verantwortlich festzustellen, dass diese technischen Daten und Spezifikationen für alle Anwendungen und vernünftigerweise vorhersehbaren Verwendungszwecke der Komponenten oder Systeme geeignet sind und ausreichen.

High Force Electro Thrust Cylinder - ETH

Übersicht	5
Technische Daten	8
Auslegungsschritte	10
Berechnen der axialen Kräfte	
Auswahl des Zylinders	
ETH - Elektrozylinder für ATEX Umgebung	
Lebensdauer	
Zulässige axiale Druckkräfte	
Zulässige Seitenkraft	
Hub, Nutzhub und Sicherheitsweg	
Nachschmierung	
_	
Abmessungen	
Motoranbauoptionen	
Motor- und Getriebeauslegung	
MontageartenStandard	
Schwenkzapfen	26
Schwenkflansch mit Bohrung Schwenkflansch mit Achsbolzen	
Endplatte	
Frontplatte	29
Front- und Endplatte	
Fußmontage	
Ausführung der Kolbenstange	
Außengewinde	32
Innengewinde	
Gabelkopf	
KugelkopfFlexible Kupplung	
Stangenführung	
Zubehör	38
Kraftsensoren - Gelenkkopf mit integriertem Kraftsensor, mit option	nalem
GelenkkopfKraftsensoren - Schwenkflansch mit Kraftmessbolzen	
Initiatoren / Endlagenschalter	
Auslegung von Antriebssträngen	43
Beispiel für die Auslegung mit vordefinierten Antriebssträngen	43
Vordefinierte Antriebsstränge ETH032	
Vordefinierte Antriebsstränge ETH050 Vordefinierte Antriebsstränge ETH080	
Vordefinierte Antriebsstränge ETH100, ETH125	
Rostollechlijesol	52

Parker Hannifin

Der Weltmarktführer für Bewegungs- und Steuerungstechnik

Ein Weltklassespieler auf einer lokalen Bühne

Globale Produktentwicklung

Parker hat mehr als 40 Jahre Erfahrung in der Entwicklung und Fertigung von Antrieben, Steuerungen, Motoren und Mechanik. Mit engagierten, global arbeitenden Produktentwicklungsteams nutzt Parker das Technologie Know-How und die Erfahrung der Entwicklerteams in Europa, Nordamerika und Asien.

Anwendungskompetenz vor Ort

Parker verfügt über lokale Entwicklungskapazitäten zur optimalen Anpassung unserer Produkte und Technologien an die Bedürfnisse der Kunden.

Fertigung nach Kundenbedarf

Um in den globalen Märkten auch zukünftig bestehen zu können, hat sich Parker verpflichtet, den steigenden Anforderungen stets gerecht zu werden. Optimierte Fertigungsmethoden und das Streben nach ständiger Verbesserung kennzeichnen die Fertigung von Parker. Wir messen uns daran, inwieweit wir den Erwartungen unserer Kunden in den Bereichen Qualität und Liefertreue entsprechen. Um diesen Erwartungen immer gerecht werden zu können, investieren wir kontinuierlich in unsere Fertigungsstandorte in Europa, Nordamerika und Asien.

Elektromechanische **Fertigungsstandorte** weltweit

Europa

Littlehampton, Großbritannien Dijon, Frankreich Offenburg, Deutschland Filderstadt, Deutschland Mailand, Italien

Asien

Wuxi, China Chennai, Indien

Nordamerika

Rohnert Park, Kalifornien Irwin, Pennsylvania Charlotte, North Carolina New Ulm. Minnesota

Offenburg, Deutschland

Lokale Fertigung und Support in Europa

Ein Netzwerk engagierter Verkaufsteams und autorisierter Fachhändler bietet Beratung und garantiert lokalen technischen Support.

Die Kontaktdaten der Verkaufsbüros finden Sie auf der Rückseite dieses Dokuments oder Sie besuchen unsere Website: www.parker.com

Littlehampton, Großbritannien

Elektromechanische Fertigung O Parker Verkaufsbüros

Händler

Diion. Frankreich

High Force Electro Thrust Cylinder - ETH

Übersicht

Beschreibung

Der Elektrozylinder ETH schließt die Lücke zwischen pneumatischen und hydraulischen Antrieben und kann diese bei vielen Applikationen ersetzen, bei gleichzeitig erhöhter Produktionssicherheit. Berechnet man die Kosten der Medien Luft & Öl, dann erkennt man, dass eine Elektromechanik, wie der Elektrozylinder ETH, in den meisten Fällen ökomonischer ist. Zusammen mit dem reichhaltigen Zubehör ergeben sich zahlreiche Möglichkeiten in den verschiedensten Bereichen.

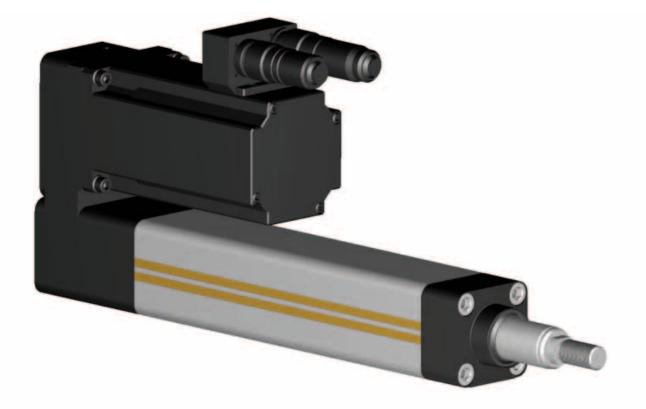
Typische Anwendungsgebiete

- Material-Handling und Zuführungssysteme
 - in der Holz- und Kunstoffverarbeitenden Industrie
 - als Vertikalachse zum Beschicken von Werkzeugmaschinen
 - in der Textilindustrie zum Spannen / Greifen von textilen Geweben
 - in der Automobilindustrie zum Transportieren und Zuführen von Bauteilen
- Prüfstände und Laboranwendungen
- Ventil- und Klappenbetätigung
- Einpressen
- Verpackungsmaschinen
- Prozessautomation f
 ür die Nahrungsmittel- und Getr
 änkeindustrie

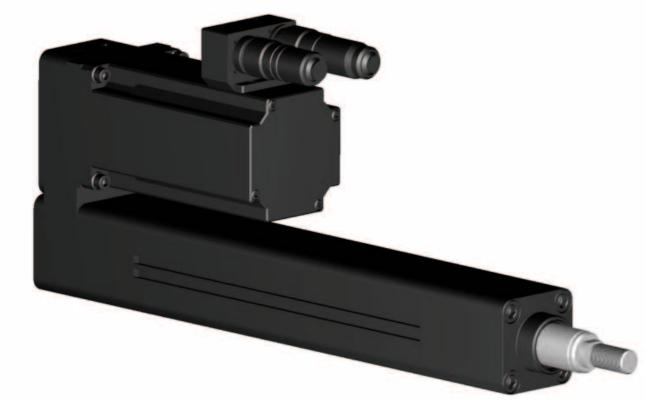
Merkmale

- Konkurrenzlose Leistungsdichte hohe Kräfte bei kleiner Baugröße
- Initiatoren / Initiatorleitungen im Profil versenkbar
- Duch Zubehörteile mit integrierten Kraftsensoren können Kräfte exakt dosiert und sogar geregelt werden
- Optimiert für sicheres Handling und einfaches Reinigen
- Hohe Lebensdauer
- Reduzierte Wartungskosten durch eine patentierte, integrierte Nachschmierbohrung im Zylinderflansch
- Einfache Austauschbarkeit da konform zur Pneumatik ISO-Flanschnorm (DIN ISO 15552:2005-12)
- Integrierte Verdrehsicherung
- Reduzierte Geräuschemission
- Alles aus einer Hand Wir bieten den kompletten Antriebsstrang: Antriebsregler, Motoren und Getriebe passend zum Elektrozylinder

Technische Daten - Übersicht


Тур	Elektrozylinder - ETH
Baugrößen	ETH032 / ETH050 / ETH080 / ETH100 / ETH125
Spindelsteigung	5, 10, 16, 20, 32 mm
Hub	bis zu 2000 mm
Zug/Druckkraft	bis zu 114000 N
Geschwindigkeit	bis zu 1,7 m/s
Beschleunigung	bis zu 15 m/s ²
Äquivalente dynamische axiale Kraft bei 2500 km Lebensdauer	bis zu 49 600 N
Wirkungsgrad	bis zu 90 %
Wiederholgenauigkeit	bis zu ±0,03 mm
Schutzarten	IP54 IP54 mit VA-Schrauben IP65
Antrieb	Inline: Axialer Antrieb oder Paralleler Antrieb mit Hochleistungszahnriemen
Richtlinien	2011/65/EG: RoHS konform RoHS
	94/9/EG: ATEX Gerätegruppe II Kategorie 2 Für weitere Informationen kontaktieren sie Parker
Klassifizierung	II 2G Ex c IIC T4 EPS 13 ATEX 2 592 X (ETH032 / ETH050)
Kidssilizieruilg	II 2G Ex c IIB T4 EPS 13 ATEX 2 592 X (ETH080 / ETH100)

Parker baut auch kundenspezifisch:


Benötigen Sie in Ihrer Applikation Sonderausführungen eines ETH-Zylinders, kontaktieren Sie uns, wir helfen Ihnen weiter

- Öl-Tauchschmierung
- Kundenspezifische Montageoptionen und Kolbenstangenenden
- Anbau von bauseits beigestellten Motoren
- Vorbereitung des Zylinders für den Einsatz bei aggressiven Umgebungsbedingungen
- Verlängerte Kolbenstange
- Polierte Kolbenstange
- · Hartverchromte Kolbenstange
-

Parker High Force Electro Thrust Cylinder

ETH IP54 (Standard)

ETH IP65

Produktaufbau

Vorderes Spindelführungslager

Das vordere Spindelende wird in einem wartungsfreien Kunststoff-Gleitlager gelagert. Es dämpft

Vibrationen und verbessert die

Dynamik und die Lebensdauer

der Spindel.

Rundlaufeigenschaften. Dadurch

erhöhen sich die Genauigkeit, die

Kugelgewindespindel

Als Vorschubeinheit kommt ein qualitativ hochwertiger Kugelgewindetrieb der Genauigkeitsklasse 7 nach ISO 3408 zum Einsatz.

Die Kugeln zwischen Spindel und Mutter sorgen für einen geringen Reibungswiderstand. Dies ermöglicht einen besonders ruhigen Lauf über den gesamten Geschwindigkeitsbereich, eine hohe Lebensdauer und einen guten Wirkungsgrad.

Verdrehsicherung

Die integrierte Verdrehsicherung besteht aus einem hochwertigen wartungsfreien Kunststoffgleiter, die über hervorragende Gleiteigenschaften verfügt.

Gehäuse/Außenkontur

Keine harten Übergänge in der Außenkontur, dadurch wird eine Reinigung vereinfacht und die Verletzungsgefahr beim Handling des Zylinders minimiert.

Hinteres Spindelstützlager

Das antriebsseitige Spindellager besteht aus vorgespannten Schrägkugellagern und nimmt hohe Axial- als auch Radialkräfte auf.

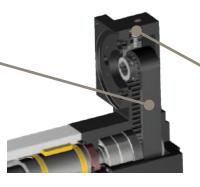
Zentrale Nachschmierung

Über den integrierten Schmiernippel kann, über das hintere Endlager, komfortabel nachgeschmiert werden.

Kolbenstangengleitlager

Das lange Kolbenstangenlager nimmt Seitenkräfte auf. Ein Abstreifer schützt den Zylinder vor dem Eindringen von Partikeln bei normalem Schmutzanfall. Bei feinen Stäuben, erhöhtem Schmutzanfall sowie Schlämmen und Flüssigkeiten sind besondere Dichtungsmaßnahmen notwendig, die auf Anfrage angeboten werden können.

Initiatoren


Initiatoren direkt im Profil versenkbar, daher treten keine Störkanten auf. Die Initiatorleitung wird einfach unter der goldenen Abdeckung versenkt (passende Initiatoren sind als Zubehör erhältlich).

Dauermagnet

Alle Elektrozylinder sind standardmäßig mit mehreren in der Spindelmutter integrierten Dauermagneten ausgestattet. Die Dauermagnete betätigen die Initiatoren, die in den Längsnuten des Zylinderkörpers montiert werden können.

Zahnriemenübersetzung

Das schlupf- und wartungsfreie Zahnriemen-Vorgelege für parallel angetriebene Zylinder (Motor sitzt parallel zum Zylinder) hat bei einem hohen Wirkungsgrad eine Übersetzung von 1:1.

Riemenspannvorrichtung

Die ausgeklügelte Riemenspannvorrichtung bei parallel angebautem Motor ermöglicht eine präzise und reproduzierbare Einstellung.

Technische Daten

Zylinderbaugröße	Einheit		ETH032			ETH050			ETH080)	
-typ			M05	M10	M16 ⁴⁾	M05	M10	M20 ³⁾	M05	M10	M32 ⁴⁾
Spindelsteigung		[mm]	5	10	16	5	10	20	5	10	32
Spindeldurchmesser		[mm]		16			20			32	
Fahrwege, Geschwi	ndiakeiten und Be	schleunia	una								
Lieferbare Hübe 1) 2)	3			s von 50	-1000 &	stufenlos von 50-1200 &			stufenlos von 50-1600 &		
Lieferbare Hube 17-7		[mm]	Standard Hübe			Sta	ndard Hi	übe	Standard Hübe		
Max. zulässige Geschw	indigkeit bei Hub =										
50-400 mm		[mm/s]	333	667	1067	333	667	1333	267	533	1707
600 mm		[mm/s]	286	540	855	333	666	1318	267	533	1707
800 mm		[mm/s]	196	373 277	592	238	462 345	917	267 264	533 501	1707 1561
1000 mm 1200 mm		[mm/s] [mm/s]	146	-	440	177 139	270	684 536	207	394	1233
1400 mm		[mm/s]	_	_	_	-	-	-	168	320	1006
1600 mm		[mm/s]	_	_	-	-	-	-	140	267	841
Max. Beschleunigung		[m/s ²]	4	8	12	4	8	15	4	8	15
Kräfte		[, 0]									
Max. axiale Zug-/Druck	kraft Motor inline	[N]		3700	2400		7000	4400		25100	10600
Max. axiale Zug-/Druck		[N]		3280	2050	9300	4920	2460			
kraft abhängig von der	100 < n < 300 min ⁻¹	[N]	3600	2620	1640	7870	3930	1960	17800	11620	3630
Motordrehzahl n	n > 300 min ⁻¹	[N]		1820	1140	5480	2740	1370		10720	3350
Motor parallel		[IN]		1020	1140	3400	2140	1370		10720	3330
Äquivalente dynamische 2500 km Lebensdauer	e axiale Krait Dei	[N]	1130	1700	1610	2910	3250	2740	3140	7500	6050
Maximal übertragba	roo Momont / Kro	ftkanatant	•								
Maximal übertragbares		[Nm]	3,2	6,5	6,8	8,2	12,4	15,6	15,7	44.4	60,0
Maximal übertragbares	n < 100 min ⁻¹	[Nm]	3,5	6,0	- '	9,1	9.		17,5	22	
Moment abhängig von	100 < n < 300 min ⁻¹	[Nm]	3,5	5		7,7	7.		17,5	22	
der Motordrehzahl n	n > 300 min ⁻¹	[Nm]	3,5	3		5,4	5,4		17,5	21	
Motor parallel Kraftkonstante Motor in		[N/Nm]	1131	565	353	1131	565	283	1131	565	177
Kraftkonstante Motor pa		[N/Nm]	1018	509	318	1018	509	254	1018	509	159
Masse		[. 4/ . 4]	.0.0		0.0	.0.0					.00
Masse Grundeinheit Nu	llhuh										
(inkl. Kolbenstange)	IIIIub	[kg]	1,2	1,2	1,3	2,2	2,3	2,5	6,9	7,6	8,7
Masse Zusatzlänge (ink	I. Kolbenstange)	[kg/m]		4,8			8,6			18,7	
Masse Kolbenstange N	ullhub	[kg]		0,06			0,15		0,59		
Masse Kolbenstange - 2	Zusatzlänge	[kg/m]		0,99			1,85			4,93	
Massenträgsheitsm	omente										
Motor parallel ohne Hub		[kgmm ²]	8,3	8,8	14,1	30,3	30,6	38,0	215,2	213,6	301,9
Motor inline ohne Hub		[kgmm ²]	7,1	7,6	12,9	25,3	25,7	33,1	166,2	164,5	252,9
Motor parallel/inline pro	Meter	[kgmm ² /m]	41,3	37,6	41,5	97,7	92,4	106,4	527,7	470,0	585,4
Genauigkeit: Zweise	eitige Wiederholpr	äzision (IS	O230-2)							
Motor inline		[mm]					±0,03				
Motor parallel		[mm]					±0,05				
Wirkungsgrad											
	der Wirkungsgrad	[%]					90				
	peinhaltet alle										
Motor parallel	Reibmomente	[%]					81				
Umgebungsbeding	ıngen										
Betriebstemperatur	[°C]	-10+70									
Umgebungstemperatur							-10+40				
Lagerungstemperatur							-20+40				
Luftfeuchtigkeit		[%]					keine Bet				
Aufstellhöhen-Bereich 1) "Bestellschlüssel" (Seite !	-0. 2) 11 :	[m]				n	nax. 3000	J			

 $^{^{1)}\,}$ "Bestellschlüssel" (Seite 52), $^{2)}\,$ Hubzwischenlängen können interpoliert werden.

³⁾ ATEX auf Anfrage

⁴⁾ ATEX nicht verfügbar, ⁵⁾ In den Kraftkonstanten sind die Wirkungsgrade enthalten.

7. 15. 1. 1. 1		Einheit	CTL	1100	CTU	125 ³⁾		
Zylinderbaugröße -typ		Ellilleit	M10	M20	M10	M20		
Spindelsteigung		[mm]	10	20	10	20		
Spindeldurchmesser		[mm]		0		3		
Fahrwege, Geschw	indiakoiton und Bo							
	indigkeiten und be			າ 100-2000 &	stufenlos vo	n 100-2000		
Lieferbare Hübe 1) 2)		[mm]		rd Hübe	& Standa			
Max. zulässige Geschv	vindigkeit bei Hub =							
100-400 mm		[mm/s]	400	800	417	833		
500 mm		[mm/s]	400	747	417	807		
600 mm		[mm/s]	333	622	395	684		
800 mm		[mm/s]	241	457	290	514		
1000 mm		[mm/s]	185	354	224	405		
1200 mm		[mm/s]	148	284	180	329		
1400 mm		[mm/s]	122	235	148	275		
1600 mm		[mm/s]	102	198	125	234		
2000 mm		[mm/s]	76	148	94	170		
Max. Beschleunigung		[m/s ²]	8	10	8	10		
Kräfte								
Max. axiale Zug-/Druck	kraft Motor inline	[N]		56000	88700	114000		
Max. axiale Zug-/Druck		[N]		50800		81 400		
kraft abhängig von der	100 < n < 300 min ⁻¹		54800	43200	76300	73700		
Motordrehzahl n	n > 300 min ⁻¹	[N]		35600	70000	61 000		
Motor parallel Äquivalente dynamisch		[iv]		33000		01000		
2500 km Lebensdauer	ie axiale Krait bei	[N]	18410	27100	27140	49600		
	ovec Memont / Kve	Hiromotomi	ha					
Maximal übertragb				000		400		
Maximal übertragbares Maximal übertragbares		[Nm]	100	200		400		
Moment abhängig von	11 < 100 111111	[Nm]		200	150	320		
der Motordrehzahl n	100 < n < 300 min ⁻¹	[Nm]	108	170		290		
Motor parallel	n > 300 min ⁻¹	[Nm]		140		240		
Kraftkonstante Motor in		[N/Nm]	565	283	565	283		
Kraftkonstante Motor p	parallel ⁵⁾	[N/Nm]	509	254	509	254		
Masse								
Masse Grundeinheit Nu	ıllhub	[kg]	21	23	56	64		
(inkl. Kolbenstange)								
Masse Zusatzlänge (inl		[kg/m]		9		2		
Masse Kolbenstange N		[kg]		,2	2,9			
Masse Kolbenstange -	Zusatzlänge	[kg/m]	7	,8	14	,4		
Massenträgsheitsn	nomente							
Motor parallel ohne Hu	b	[kgmm ²]	5860	6240	17050	17990		
Motor inline ohne Hub		[kgmm ²]	2240	2620	12960	13400		
Motor parallel/inline pro	Meter	[kgmm ² /m]	4270	4710	10070	10490		
Genauigkeit: Zweis	eitige Wiederholpr	äzision (IS	O230-2)					
Motor inline		[mm]	,	±0,	,03			
Motor parallel		[mm]		±0	,05			
Wirkungsgrad								
Motor inline	der Wirkungsgrad	F0/ 1		0	0			
Motor milite	beinhaltet alle	[%]		9	U			
Motor parallel	Reibmomente	[%]		8	1			
Umgebungsbeding	ungen							
Betriebstemperatur		[°C]		-10	.+70			
Umgebungstemperatur		[°C]	-10+40					
Lagerungstemperatur		[°C]			.+40			
Luftfeuchtigkeit		[%]	095 (keine Betauung)					
Aufstellhöhen-Bereich		[m]	max. 3000					
1) "Bestellschlüssel" (Seite	52) ²⁾ Huhzwischenlänge		rnoliert werden					
3) ATEV out Antropo 5) In d				•				

Technische Daten gelten unter Normbedingungen und nur für die jeweils einzeln vorliegende Betriebs- und Belastungsart. Bei zusammengesetzter Belastung muss nach den physikalischen Gesetzen und technischen Regeln geprüft werden, ob einzelne Daten möglicherweise zu reduzieren sind. Halten Sie im Zweifelsfalle bitte Rücksprache mit Parker.

 $^{^{\}rm 3)}\,$ ATEX auf Anfrage, $^{\rm 5)}$ In den Kraftkonstanten sind die Wirkungsgrade enthalten.

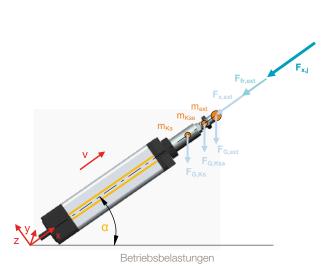
Auslegungsschritte

Mit den nachfolgenden Auslegungsschritten finden Sie den passenden Elektrozylinder.

Wählen Sie mit abgeschätzten Applikationsdaten einen Elektrozylinder aus. Berechnen Sie mit nachfolgend beschriebenen Auslegungsschritten die tatsächlich benötigten Applikationsdaten.

Überschreiten die Anforderungen Ihrer Applikation einen Maximalwert, dann wählen Sie einen größeren Elektrozylinder und prüfen Sie bitte die Maximalwerte erneut. Eventuell kann auch ein kleinerer Elektrozylinder die Anforderungen erfüllen.

Automatisierte Auslegung mit dem "EL-Sizing Tool"


Eine weitere Vereinfachung der Auslegung bieten wir mit einem Auslegungstool. Download unter: www.parker.com/eme/de/eth

Schritt	Applikationsdaten	Auslegung	Mit Hilfe von
1	Genauigkeit, Umgebungsbedingungen	Prüfen Sie die Rahmenbedingungen für den Einsatz des ETH in Ihrer Applikation.	"Technische Daten" (Seite 8)
2	Platzbedarf	Prüfen Sie den in Ihrer Applikation verfügbaren Platz und wählen Sie die Motoranbauoption: inline oder parallel.	"Abmessungen" (Seite 21)
3	Axiale Kräfte	Berechnen der axialen Kräfte der einzelnen Segmente des Applikationszyklus.	"Berechnen der axialen Kräfte" (Seite 11)
		Ermitteln der maximal benötigten axialen Kraft (Zug- und Druckkraft).	Ermitteln der maximal benötigten axialen Kraft (Seite 12)
4	Maximal benötigte Kraft	Auswahl des Zylinders über die maximale axiale Zug-/ Druckkraft (verwenden Sie Kennwerte der gewählten Motoranbauoption: inline oder parallel).	"Technische Daten" (Seite 8)
5	Maximale Geschwindigkeit	Auswahl der Spindelsteigung beim gewählten Zylinder.	"Technische Daten" (Seite 8)
6	Maximale Beschleunigung	Kontrolle ob die maximale Beschleunigung ausreicht.	"Technische Daten" (Seite 8)
7	Hub wählen	Auswahl des gewünschten Hubes: Benötigter Hub aus Nutzhub und Sicherheitswegen ermitteln aus Liste der Vorzugshübe den gewünschten Hub auswählen oder falls gewünschte Hublänge nicht vorhanden: Nutzhublänge in mm-Schritten festlegen. Achtung! Minimal und maximal möglicher Hub beachten	"Hub, Nutzhub und Sicherheitsweg" (Seite 19) "Bestellschlüssel" (Seite 52) "Technische Daten" (Seite 8)
8	Zulässige Druckkraft wegen Knickgefahr	Prüfen der maximalen Druckkraft, abhängig vom Hub und der Montageart. Evtl. lässt Ihre Applikation eine andere Montageart zu, wodurch die maximale Druckkraft realisiert werden kann.	"Zulässige axiale Druckkräfte" (Seite 15)
9	Lebensdauer	Ermitteln der Lebensdauer mit Hilfe einer äquivalenten axialen Kraft, der Einsatzumgebung (Betriebsbeiwert) und den Lebensdauer - Diagrammen.	"Lebensdauer" (Seite 13)
10	Zulässige Seitenkraft	Ermitteln Sie die Seitenkräfte Ihrer Applikation und prüfen Sie diese gegen die zulässigen Seitenkräfte (hubabhängig).	Seitenkraft (Seite 17) Diagramme (Seite 17)
11	Nachschmierzyklus	Prüfen Sie ob der geforderte Nachschmierzyklus in die betriebliche Umgebung passt.	"Nachschmierung" (Seite 20)
12	Motor / Getriebe	Berechnen des erforderlichen Drehmoments, um die benötigte Kraft am ETH zu erzeugen. Auswahl eines geeigneten Motors.	"Motor- und Getriebeauslegung" (Seite 25)
13	Motoranbauflansch	Auswahl des passenden Motoranbauflansches.	"Motoranbauoptionen" (Seite 22)
14	Montageart	Auswahl der Befestigungsart des Elektrozylinders.	"Montagearten" (Seite 26)
15	Kolbenstangen	Auswahl des Kolbenstangenendes zur Befestigung der Last.	"Ausführung der Kolbenstange" (Seite 32)

Berechnen der axialen Kräfte

Mit den Formeln (1 & 2) können die axialen Kräfte der einzelnen Segmente des Applikationszyklus ermittelt werden. Mit Hilfe der axialen Kräfte wird geprüft, ob der vorausgewählte Elektrozylinder die geforderten Kräfte zur Verfügung stellen kann und die maximale Knickbelastung eingehalten wird. Die axialen Kräfte dienen auch als Grundlage zur Berechnung der Lebensdauer.

= Axiale Kräfte beim Ausfahren in N Axiale Kräfte beim Einfahren in N $F_{x,\text{ext}}$ Externe axiale Kraft in N Gewichtskraft durch eine zusätzliche Masse in N $F_{G.ext}$ Gewichtskraft durch das Kolbenstangenende in N $F_{\text{G,Kse}}$ $F_{G.Ks}$ Gewichtskraft durch die Kolbenstange in N Zusätzliche Masse in kg Masse des Kolbenstangenendes in kg m_{Kse} (siehe "Ausführungen der Kolbenstange" Seite 32) Masse der Kolbenstange bei Nullhub in kg $m_{Ks,0}$ (siehe Tabelle "Technische Daten" Seite 8)

Masse der Kolbenstange pro m Hub in kg (siehe Tabelle "Technische Daten" Seite 8) $m_{\text{Ks},\text{Hub}}$

Gewählter Hub in m Hub

Formelzeichen (Formel 1-2)

 $a_{K,j}$ Beschleunigung an der Kolbenstange in m/s²

Ausrichtungswinkel in °

Maximal zulässige Axialkraft in N

Externe Reibungskraft in N $F_{fr,ext}$

Index "j" für die einzelnen Segmente des Applikationszyklus

Berechnen der axialen Kräfte

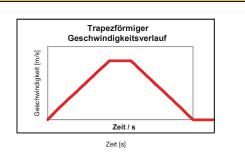
Ermitteln Sie für jedes Segment des Applikationszykus die auftretenden axialen Kräfte.

Bei ausfahrender Kolbenstange:

$$F_{x,a,j} = F_{x,ext} + F_{fr,ext} + (m_{ext} + m_{Ks} + m_{Ks,0} + m_{Ks,Hub} \bullet Hub) \bullet (a_{K,j} + \sin\alpha \bullet 9,81\frac{m}{s^2})$$

Formel 1

Bei einfahrender Kolbenstange:


$$F_{x,e,j} = F_{x,ext} - F_{fr,ext} + (m_{ext} + m_{Kse} + m_{Ks,0} + m_{Ks,Hub} \bullet Hub) \bullet (-a_{K,j} + sin\alpha \bullet 9.81\frac{m}{s^2})$$

Formel 2

Berechnungsbeispiel:

- Vertikale Anordnung ETH050
- Hub = 500 mm = 0,5 m
- Steigung = 5 mm
- Kolbenstangenende: Außengewinde
- Trapezförmiger Geschwindigkeitsverlauf
- Beschleunigung $a_K = 4 \text{ m/s}^2$
- $m_{ext} = 150 \text{ kg}$
- $F_{x,ext} = 1000 \text{ N}$
- $m_{Kse} = 0,15 \text{ kg}$
- $m_{Ks,0} = 0,15 \text{ kg}$
- $m_{Ks,Hub}$ = 1,85 kg/m Ausrichtungswinkel α = -90°
- Externe Reibungskraft = 30 N

Ausfahrende Kolbenstange: Masse wird nach unten bewegt

Belastungszustand: Beschleunigung

$$F_{x,s,1} = 1000N + 30N + \left(150kg + 0.15kg + 0.15kg + 1.85\frac{kg}{m} \cdot 0.5m\right) \cdot \left(4\frac{m}{s^2} + \sin(-90^\circ) \cdot 9.81\frac{m}{s^2}\right) = 151N$$
 Belastungszustand: Konstante Geschwindigkeit

$$F_{x,a,2} = 1000N + 30N + \left(150kg + 0.15kg + 0.15kg + 1.85\frac{kg}{m} \cdot 0.5m\right) \cdot \left(0.\frac{m}{s^2} + \sin(-90^\circ) \cdot 9.81\frac{m}{s^2}\right) = -454N$$
 Belastungszustand: Verzögerung

$$F_{s,o,3} = 1000N + 30N + \left(150kg + 0.15kg + 0.15kg + 0.15kg + 1.85\frac{kg}{m} \cdot 0.5m\right) \cdot \left(-4\frac{m}{s^2} + \sin(-90^\circ) \cdot 9.81\frac{m}{s^2}\right) = -1058N$$

Einfahrende Kolbenstange: Masse wird nach oben bewegt

Belastungszustand: Beschleunigung

$$F_{x,e,4} = 1000N - 30N + \left(150kg + 0.15kg + 0.15kg + 1.85\frac{kg}{m} \cdot 0.5m\right) \cdot \left(-4\frac{m}{s^2} + \sin(-90^\circ) \cdot 9.81\frac{m}{s^2}\right) = -1118N$$

$$F_{x,e,5} = 1000N - 30N + \left(150kg + 0.15kg + 0.15kg + 0.15kg + 1.85\frac{kg}{m} \cdot 0.5m\right) \cdot \left(0\frac{m}{s^2} + \sin(-90^\circ) \cdot 9.81\frac{m}{s^2}\right) = -514N$$

Belastungszustand: Verzögerung

$$F_{x,e,6} = 1000N - 30N + \left(150kg + 0.15kg + 0.15kg + 1.85\frac{kg}{m} \cdot 0.5m\right) \cdot \left(4\frac{m}{c^2} + \sin(-90^\circ) \cdot 9.81\frac{m}{c^2}\right) = 91N$$

Auswahl des Zylinders

Benötigte maximale axiale Kraft

Ermitteln Sie die maximal auftretende axiale Kraft (Seite 11), die der Elektrozylinder zur Verfügung stellen muss.

Vorauswahl des Elektrozylinder

Mit der maximal auftretenden axialen Kraft treffen Sie mit Hilfe der "Technischen Daten" (Seite 8) eine Vorauswahl der möglichen Elektrozylinder.

Beachten Sie dabei, ob Sie aufgrund des Platzbedarfs, den Elektrozylinder mit parallelem Antrieb oder mit dem Antrieb inline einsetzen können; evtl. gelten unterschiedliche maximale axiale Zug- und Druckkräfte.

Benötigte maximale Geschwindigkeit

Die maximale Geschwindigkeit des Elektrozylinders ist hubabhängig.

Wählen Sie aus der getroffenen Vorauswahl (Auswahl aufgrund der maximal benötigten axialen Kraft) und dem abgeschätzen Fahrweg den passenden Elektrozylinder mit Hilfe der "Technischen Daten" (Seite 8) aus. Die Geschwindigkeit muss nach Festlegen des genauen Hubs erneut überprüft werden.

Benötigte maximale Beschleunigung

Die maximale Beschleunigung ist abhängig von der Spindelsteigung und eine weitere Auswahlgröße für den passenden Elektrozylinder und ist in den "Technischen Daten" (Seite 8) angegeben.

ETH - Elektrozylinder für ATEX Umgebung

Parker Hannifin hat die erfolgreiche ETH High Force Electro Thrust Cylinder Reihe für den Gebrauch in explosiven Atmosphären (ATEX Umgebungen) erweitert. Der neue ETH ATEX bietet alle Vorteile der beliebten ETH Elektrozylinderreihe und bietet nun auch in explosiven Atmosphären präzises Bewegen, Positionieren, Einstellen und Betätigen.

Die neue ETH ATEX Palette besitzt die ATEX Zertifizierung für Gerätegruppe II Kategorie 2 in explosionsgefährdeten Gasatmosphären. Zusammen mit den (ebenfalls ATEX-zertifizierten) Servomotoren der Baureihe EX, bietet Parker Hannifin nun ein komplettes Antriebspaket für solche Anwendungen.

Zielmarkt / Applikationen

Eine ATEX-Umgebung enthält ein Gemisch aus Luft und brennbaren Substanzen wie Gase, Dämpfe oder Flüssigkeiten, unter atmosphärischen Bedingungen, die potentiell explosiv sind. ATEX-zertifizierte Geräte sind essentiell für den Gebrauch unter diesen Bedingungen.

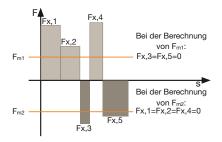
Typische Anwendungen:

- Öl & Gasindustrie
- Chemie- und Pharmazeutische Industrie
- Lebensmittelindustrie (Brennereien)
- Druck- & Kunststoffindustrie

- Energie (Erzeugung von Biogas, Gasturbinen)
- Automobilindustrie (Lackierung)
- Müllaufbereitungsanlagen

Vorgehen beim Projektieren eines ATEX Zylinders

- Projektieren Sie einen ETH Elektrozylinder mit Hilfe des vorliegenden Katalogs
- Prüfen Sie anhand des Dokuments "ETH ATEX Rahmendingungen für den Einsatz" [190-550006] ob der gewählte ETH Elektrozylinder in Ihrer Applikation sämtliche ATEX-Anforderungen erfüllt.
- Falls die Bedingungen nicht erfüllt werden, wählen Sie einen größeren Elektrozylinder aus oder prüfen Sie ob die Applikationsdaten verändert werden können (z.B. veränderte Zykluszeiten).
- Möglich ist auch die applikationsspezifische Freigabe durch Messung der Eigenerwärmung mit Ihren Applikationsdaten bei uns im Haus; (siehe "ETH ATEX Rahmenbedingungen für den Einsatz" [190-550006].


Lebensdauer

Nominelle Lebensdauer^{1, 2}

Mit den auftretenden Belastungen kann die nominelle Lebensdauer des Elektrozylinders anhand der Diagramme Seite 14 bestimmt werden.

Hierfür werden zunächst die für jedes Segment des Applikationszyklus berechneten Kräfte zu einer äquivalenten axialen Kraft Fm zusammenzufasst "Berechnen der axialen Kräfte" (Seite 11). Treten axiale Kräfte mit unterschiedlichem Vorzeichen auf, so sind zwei äquivalente axiale Kräfte zu berechnen:

- F_{m1} für alle positiven Kräfte. Die negativen Kräfte werden dabei zu Null.
- F_{m2} für alle negativen Kräfte. Die positiven Kräfte werden dabei zu Null.

Berechnung

$$F_{m1,2} = \sqrt[3]{\frac{1}{s_{ges}}} (F_{x,1}^3 \bullet s_1 + F_{x,2}^3 \bullet s_2 + F_{x,3}^3 \bullet s_3 + ...)$$
Formel 3

Mit den äquivalenten axialen Kräften wird die nominelle Lebensdauer L in km aus den Diagrammen auf Seite 14 bestimmt.

Bei beidseitiger Belastung beträgt die nominelle Lebensdauer:

$$L = (L_1^{-1,11} + L_2^{-1,11})^{-0,9}$$

Formel 3.1

Tatsächliche Lebensdauer

Die tatsächliche Lebensdauer lässt sich aufgrund verschiedenartiger Einflüsse nur näherungsweise bestimmen. Die Berechnung der nominellen Lebensdauer L berücksichtigt u.a. keine Mangelschmierung, Stöße, Vibrationen oder grenzwertige Seitenkräfte. Diese Einflüsse können jedoch mittels Betriebsbeiwert fw näherungsweise erfasst werden.

Die tatsächliche Lebensdauer berechnet sich dann wie folgt:

$$L_{fw} = \frac{L}{f_w^3}$$

Formel 4

Betriebsbeiwert fw

Bewegungszyklus	Stöße/Vibrationen							
Dewegungszykius	keine	leicht	mittel	stark				
Größer 2,5 Spindelumdrehungen	1,0	1,2	1,4	1,7				
1,0 bis 2,5 Spindelumdrehungen ³⁾ (Kurzhubanwendungen)	1,8	2,1	2,5	3,0				

³⁾ Es muss nach maximal 10 000 Bewegungszyklen eine Schmierfahrt (siehe Tabelle Schmierfahrtlängen für Kurzhubanwendungen) durchgeführt werden.

Randbedingungen für den Betriebsbeiwert fw:

- Extern geführte Elektrozylinder
- Beschleunigungen <10 m/s²

Falls ein Betriebsbeiwert von größer 1,5 ermittelt wird, kontaktieren sie bitte Parker. Für detailierte Berechnungen oder bei Abweichungen der Randbedingungen ist auch Parker zu kontaktieren.

Schmierfahrtlängen für Kurzhubanwendungen

fahrt- [mm]	ETH032			ETH050						ETH100			
fah T	M05	M10	M16	M05	M10	M20	M05	M10	M32	M10	M20	M10	M20
Schmier' längen	>45	>54	>58	>40	>46	>58	>47	>65	>95	>102	>140	>122	>210

Verwendete Abkürzungen (Formel 3-4)

F_m = Äquivalente axiale Kraft in N

 $F_{x,i}$ = Resultierende axiale Kraft in N siehe Formel 1 & Formel 2, Seite 11

 s_i = Weg unter bestimmter Kraft $F_{x,a,j}$ in mm

s_{total} = Gesamtverfahrweg in mm

= Nominelle Lebensdauer in km siehe Diagramme "Lebensdauer" Seite 14

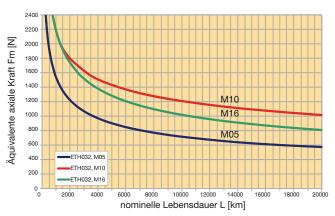
 L_{fw} = Lebensdauer mit Berücksichtigung des Betriebsbeiwerts in km

= Betriebsbeiwert siehe Tabelle "Betriebsbeiwert" Seite 13

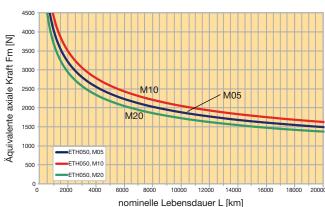
Index "j" für die einzelnen Segmente des Applikationszyklus

Wenn Sie die Lebensdauer als Anzahl der möglichen Zyklen benötigen, dividieren Sie einfach die Lebensdauer in Kilometer durch zweimal den gefahrenen Hub. D.h. Stillstandszeiten gehen bei der

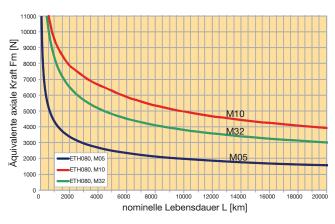
Ermittlung der äquivalenten axialen Kraft (F_m) nicht ein, da s_i=0. Achtung, betrachten Sie immer Hin- und Rückhub.

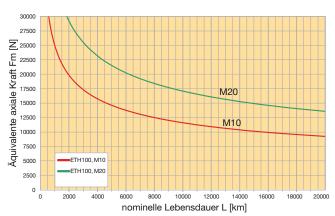

¹ Die nominelle Lebensdauer gibt an, welche Lebensdauer von 90 % einer genügend großen Anzahl gleicher Elektrozylinder erreicht wird, bevor die ersten Anzeichen von Werkstoffermüdungen auftreten.

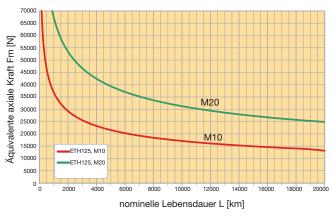
² Für ATEX Zylinder ist die Lebensdauer reduziert. Beachten Sie die Broschüre "Bestimmungsgemäße Verwendung" (190-550004).


Diagramme ²

Die angegebenen Werte gelten bei Einhaltung der vorgeschriebenen Nachschmierintervalle (siehe Nachschmierung). Die Diagramme sind in Anlehnung an DIN ISO 3408-5 angegeben.


ETH032


ETH050


ETH080

ETH100

ETH125

Voraussetzungen für nominelle Lebensdauer

- Lager- bzw. Spindeltemperatur zwischen 20 °C und 40 °C.
- Keine Beeinträchtigung der Schmierung z.B. durch Fremdpartikel.
- Nachschmierung gemäß Vorschrift.
- Werte für Vorschubkraft, Geschwindigkeit und Beschleunigung müssen ohne Ausnahme eingehalten werden.
- Kein Anfahren der mechanischen Anschläge (externe oder interne), keine sonstigen schlagartigen Belastungen, da die angegebene Maximalkraft des Zylinders niemals überschritten werden darf.
- Keine externen Seitenkräfte
- Betriebsbeiwert fw = 1. Zur Bestimmung der tatsächlichen Lebensdauer und des zugehörigen Betriebsbeiwertes siehe Kapitel "Lebensdauer" siehe Seite 13
- Keine gleichzeitige hohe Ausnutzung mehrerer Leistungsdaten (z.B. maximale Geschwindigkeit oder Vorschubkraft).
- Kein Regelschwingen im Stillstand.

² Für ATEX Zylinder ist die Lebensdauer reduziert. Beachten Sie die Broschüre "Bestimmungsgemäße Verwendung" (190-550004).

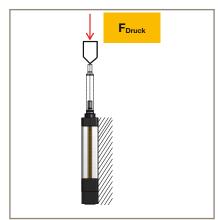
Zulässige axiale Druckkräfte

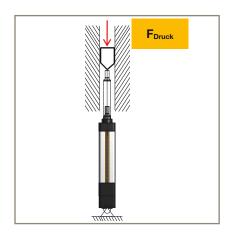
Begrenzt durch Knickgefahr, abhängig vom Hub und der Montageart; Zugkräfte stellen keine Knickgefahr dar. Prüfen Sie ob die maximale axiale Kraft (Seite 11) bei der geplanten Montageart und für den gewünschten Hub möglich ist

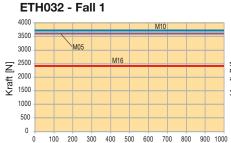
Diagramme

Fall 1

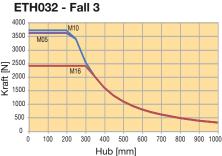
Zylinder fest montiert mittels Anbauflansche, Fußmontage oder Montageplatten. Befestigung immer auch vorne am Zylinder. Kolbenstange axial geführt.

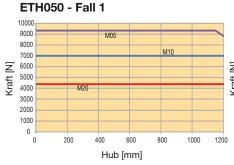

Fall 2

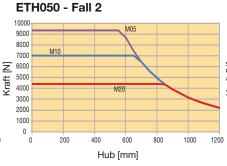

Zylinder fest montiert mittels Anbauflansche, Fußmontage oder Montageplatten.
Befestigung immer auch vorne am Zylinder.
Kolbenstange nicht axial geführt. Externe Kraft axial zur Zylinderachse.

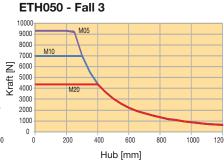

Fall 3

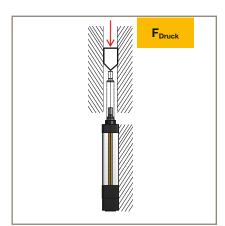
Zylinder montiert mittels Schwenkzapfen, Schwenkflansch oder jeder anderen hinteren Befestigung (z.B. hintere Montageplatte). Kolbenstange axial geführt.

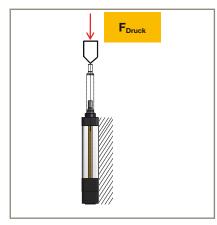




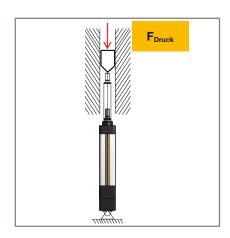


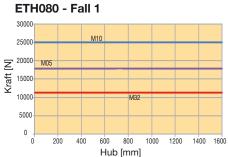

Hub [mm]

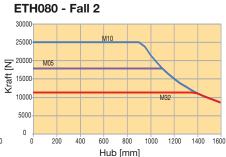



Fall 1

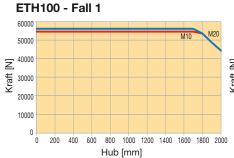
Zylinder fest montiert mittels Anbauflansche, Fußmontage oder Montageplatten. Befestigung immer auch vorne am Zylinder. Kolbenstange axial geführt.

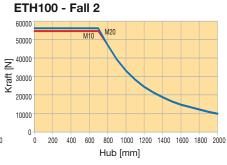

Fall 2

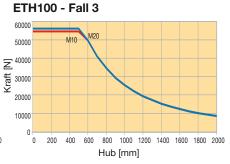

Zylinder fest montiert mittels Anbauflansche, Fußmontage oder Montageplatten.
Befestigung immer auch vorne am Zylinder.
Kolbenstange nicht axial geführt. Externe
Kraft axial zur Zylinderachse.

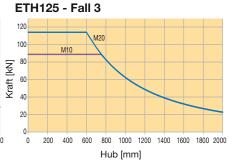



Fall 3


Zylinder montiert mittels Schwenkzapfen, Schwenkflansch oder jeder anderen hinteren Befestigung (z.B. hintere Montageplatte). Kolbenstange axial geführt.







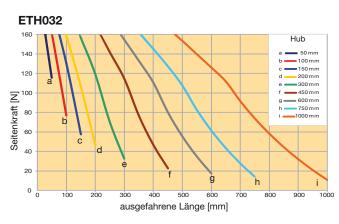
ETH125 - Fall 1 120 100 80 40 40 20 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Hub [mm]

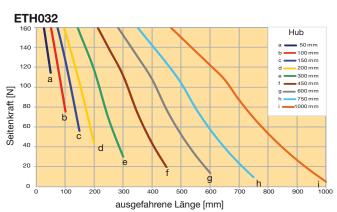
Zulässige Seitenkraft 1)

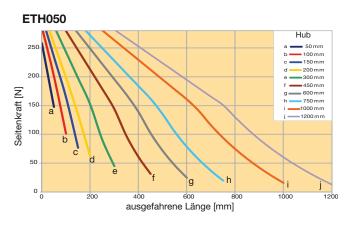
Der Elektrozylinder verfügt über eine großzügig dimensionierte Kolbenstangen- und Spindelmutterlagerung in Form von hochwertigen Kunststoffführungselementen zur Aufnahme der Seitenkraft.

Beachten Sie, dass Elektrozylinder mit größerem Hub bei gleicher ausgefahrener Länge, eine höhere Seitenkraft zulassen. Deshalb kann zur Erhöhung der zulässigen Seitenkraft die Wahl eines größeren Hubs, als für die Applikation erforderlich, sinnvoll sein.

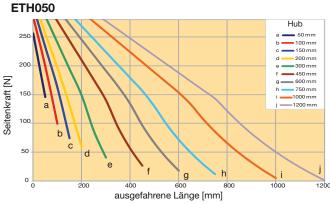
Werden die zulässigen Seitenkräfte überschritten oder tritt gleichzeitig die maximale axiale Kraft auf, dann muss die optionale Stangenführung (Option R) verwendet werden.

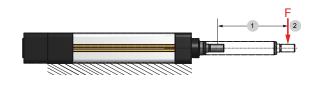

Zulässige Seitenkräfte bei vertikalem Einbau



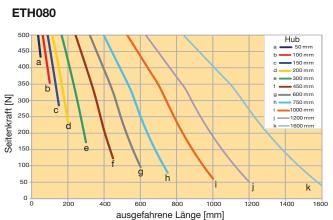

Zulässige Seitenkräfte bei horizontalem Einbau

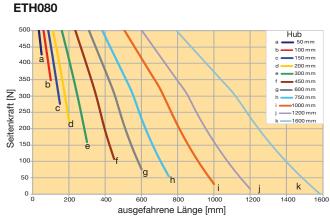
- 1: ausgefahrene Länge
- 2: Krafteinleitung mittig Kolbenstangengewinde

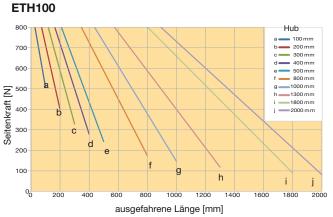


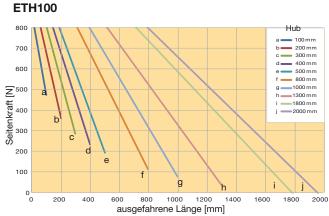

Diagramme gelten bei Umgebungstemperatur 20 °C, für alle Gehäuseorientierungen und für eine mittlere Verfahrgeschwindigkeit von 0,5 m/s (ETH032, ETH050, ETH080) bzw. 0,25 m/s (ETH100, ETH125).

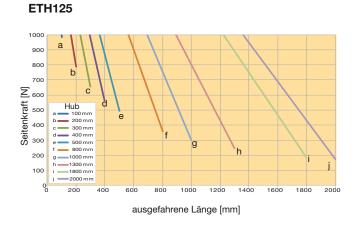
¹⁾ Bei ATEX Zylindern sind keine Seitenkräfte zulässig!


Zulässige Seitenkräfte bei vertikalem Einbau


Zulässige Seitenkräfte bei horizontalem Einbau






- 1: ausgefahrene Länge
- 2: Krafteinleitung mittig Kolbenstangengewinde

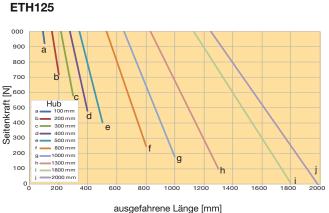
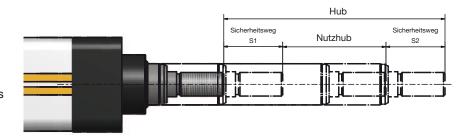


Diagramme gelten bei Umgebungstemperatur 20 °C, für alle Gehäuseorientierungen und für eine mittlere Verfahrgeschwindigkeit von 0,5 m/s (ETH032, ETH050, ETH080) bzw. 0,25 m/s (ETH100, ETH125).

¹⁾ Bei ATEX Zylindern sind keine Seitenkräfte zulässig!

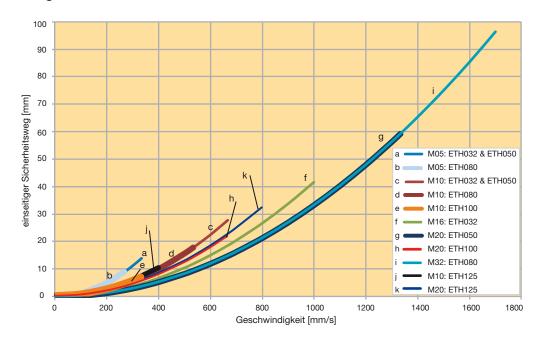
Hub, Nutzhub und Sicherheitsweg


Berechnung

Hub:

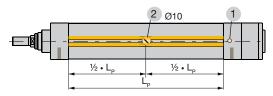
Bei dem im Bestellschlüssel anzugebenden Hub handelt es sich um den mechanisch maximal möglichen Hub zwischen den internen Endanschlägen.

Nutzhub:

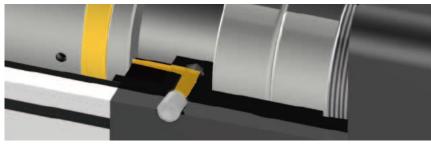

Der Nutzhub ist der Hub, der für Ihre Applikation erforderlich ist. Er ist stets kürzer als der Hub.

Sicherheitsweg (S1 & S2):

Sicherheitswege werden benötigt, um den Zylinder nach dem Überfahren eines Endgrenzinitiators abzubremsen, Not-Stop, um zu verhindern, dass die internen mechanischen Endanschläge angefahren werden. Je nach Spindelsteigung und maximaler Geschwindigkeit wird im folgenden Diagramm ein Mindest-Sicherheitsweg empfohlen, welcher erfahrungsgemäß für die meisten Applikationen ausreicht. Bei anspruchsvollen Anwendungen, mit große Massen bei hoher Dynamik, müssen die Sicherheitswege berechnet und entsprechend vergrößert werden (Berechnung auf Anfrage).


Diagramm

Info: Der aus dem Diagramm ermittelte Sicherheitsweg gilt für eine Seite. D.h. der Diagrammwert muss mit Faktor 2 multipliziert werden um den gesamten Sicherheitsweg zu erhalten. Das Diagramm basiert auf der maximalen Spindel - Beschleunigung / -Verzögerung


Nachschmierung

Alle Baugrößen besitzen eine zentrale Nachschmierbohrung, die es erlaubt die Spindelmutter nachzuschmieren (Kennzeichnung "1" siehe Bestellcode Seite 52).

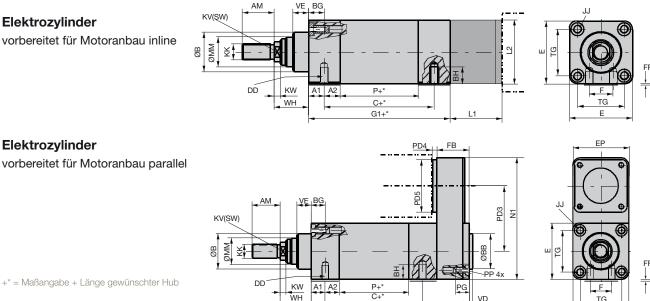
- 1: Zentrale Nachschmierung (Standard)
- 2: Optionale Nachschmierung (auf allen 4 Seiten möglich).
- L_P: Länge Profil

Option 1: Zentrale Nachschmierung (Standard)

Nach geregeltem Anfahren an den hinteren Anschlag (eingefahrener Zustand) kann über einen Schmiernippel komfortabel nachgeschmiert werden. Die Orientierung der zentralen Nachschmierung ist immer auf 3 Uhr vorgesehen.

Option 2...5: Nachschmierung mittig durch eine Profilöffnung

Falls es die Applikation nicht erlaubt in die hintere Endlage zu fahren, bzw. die zentrale Nachschmierungsöffnung nicht zugänglich ist, besteht die M fnung nachzuschmieren.


Der freie Zugang zu dieser Bohrung - auch nach dem Einbau des Zylinders in ein System - kann über die Wahl der entsprechenden Gehäuse-orientierung (siehe Bestellcode Seite 52) sichergestellt werden. Die Bohrung ist genau in der Mitte des Aluminium-Profils.

Abmessungen

Elektrozylinder

Elektrozylinder

vorbereitet für Motoranbau inline

G2+*

+* = Maßangabe + Länge gewünschter Hub

Abmessungen Standard (IP-Version)

Zylinderbaugröße	Einheit		ETH032	2		ETH050)		ETH080)	ETH	1100	ETH	l125						
Spindelsteigung		M05	M10	M16	M05	M10	M20	M05	M10	M32	M10	M20	M10	M20						
С	[mm]	93,6 (93,6)	102,6 (102,6)	106,6 (106,6)	99,5 (100,5)	105,5 (106,5)	117,5 (118,5)	141,5 (142,5)	159,5 (160,5)	189,5 (190,5)	-	2)	_ 2)							
G1	[mm]	133 (180,5)	142 (189,5)	146 (193,5)	154 (198,5)	160 (204,5)	172 (216,5)	197 (259,5)	215 (277,5)	245 (307,5)	323 (349,5)	361 (387,5)	461 (487,5)	549 (575,5)						
G2	[mm]	180,5 (228,5)	189,5 (237,5)	193,5 (241,5)	194 (239)	200 (245)	212 (257)	257 (320)	275 (338)	305 (368)	451 (478,0)	489 (516,0)	624 (651,0)	712 (739,0)						
P	[mm]	66	75	79	67	73	85	89	107	137	162	200	192	280						
A1	[mm]		14 (60)			15,5 (58,5	i)		21 (82)		-	2)	-	2)						
A2	[mm]		17			18,5			32		-	2)	_	2)						
AM	[mm]		22			32			40		7		9	6						
BG (=BN+BS)	[mm]		16			25			26		3	2	4	4						
BN Nutzbare Gewindelänge	[mm]		11			20			20		2	2	3	3						
BS Tiefe der Schlüsselweite (ohne Gewinde)	[mm]		5			5			6		1		1							
BH	[mm]		9			12,7			18,5			2)		2)						
DD Montagegewinde 1)	[mm]		M6x1,0			M8x1,25		M12x1,75		5	_ 2)		_2)							
E	[mm]		46,5			63,5		95			120		150							
EP			46,5			63,5		95			175		22							
F	[mm]		16			24			30		-	2)		2)						
FF	[mm]		0,5			0,5			1,0		()	()						
JJ	[mm]		M6x1,0		M8x1,25		M10x1,5		M16x2		M20	x2,5								
PP	[mm]		M16x2			M6x1,0		M8x1,25		M8x1,25		M8x1,25		M8x1,25			M10	x1,5	M20	x2,5
PG (Gewindetiefe am PA Gehäuse)	[mm]		25		В	BG (BN+BS)		BG (BN+BS)		BG (BN+		S)	BG (B	N+BS)	3	5				
KK	[mm]	I	M10x1,25	5		M16x1,5			M20x1,5		M4	2x2	M4	8x2						
KV	[mm]		10			17		22			4	6	5	5						
ØMM h9	[mm]		22			28			45		7	0	8	5						
TG	[mm]		32,5			46,5			72		8		10							
KW	[mm]		5			6,5			10		1	0	1	0						
N1	[mm]		126			160			233,5		34	17	45	50						
FB	[mm]		47,5 (48)			40 (40,5)			60 (60,5)			128,5)	163 (*							
VD	[mm]		4			4		4				1		5						
ØBB	[mm]		30 d11			40 d11		45 d11			90 d9		110 d8							
VE	[mm]		12		16		20			20		20								
WH	[mm]		26			37			46		5	51 53		3						
ØB	[mm]		30 d11			40 d11			60 d11			90 d8		110 d8						

Gewinde "DD" ist nur bei Montageart "F" vorhanden.
 ETH100, ETH125 haben keine Montagegewinde an der Zylinderunterseite.

Motoranbauoptionen

					Motorabm	Motor	anbauop	tionen		
	inline	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	L1	L2	
		K1A	SMH60-B8/9	40	63	9	20	60,0	60,0	
		K1A	MH56-B5/9	40	63	9	20	60,0	60,0	
		K1B	SMH60-B5/11	60	75	11	23			
		K1B	MH70-B5/11	60	75	11	23	60,0	70,0	
		K1B	NX3, EX3	60	75	11	23			
		K1C	SMH82-B8/14	80	100	14	30	67,0	82,0	
		P1A	PS60	50	70	16	40	77,0	63,5	
ETH032		P1G	PE3	40	52	14	35	72,0	63,5	
툐	parallel	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	PD3	PD4	PD5
		K1A	SMH60-B8/9	40	63	9	20		9,0	60,0
		K1A	MH56-B5/9	40	63	9	20		9,0	00,0
	PD <u>4</u>	K1B	SMH60-B5/11	60	75	11	23		9,0	70,0
	- BDS	K1B	MH70-B5/11	60	75	11	23	67,5	9,0	70,0
		K1B	NX3, EX3	60	75	11	23	01,5		
		K1C	SMH82-B8/14	80	100	14	30		14,0	82,0
		P1A	PS60	50	70	16	40		22,0	63,5
		P1G	PE3	40	52	14	35		16,0	63,5

					Motorabm		Motora	anbauop	tionen	
	inline	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	L1	L2	
		K1B	SMH60-B5/11	60	75	11	23	59	70	
		K1B	MH70-B5/11	60	75	11	23	59	70	
		K1B	NX3, EX3	60	75	11	23	59	70	
		K1C	SMH82-B8/14	80	100	14	30	63	82	
		K1E	SMH82-B5/19	95	115	19	40	84	100	
		K1E	SMH100-B5/19	95	115	19	40	84	100	
		K1E	MH105-B5/19	95	115	19	40	84	105	
		K1D	MH105-B9/19	80	100	19	40	84	105	
00		K1D	SMH82-B8/19	80	100	19	40	84	82	
ETH050		K1D	NX4, EX4	80	100	19	40	84	82	
ш		P1A	PS60	50	70	16	40	74	63,5	
		P1G	PE3	40	52	14	35	69	63,5	
	parallel	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	PD3	PD4	PD5
		K1B	SMH60-B5/11	60	75	11	23		9	70
	PD4	K1B	MH70-B5/11	60	75	11	23		9	70
	9	K1B	NX3, EX3	60	75	11	23		9	70
		K1C	SMH82-B8/14	80	100	14	30	87,5	13	82
		K1F	SMH100-B5/14 ¹⁾	95	115	14	30		13	100
	1112 1112 11	P1A	PS60	50	70	16	40		24	63,5
		P1G	PE3	40	52	14	35		16	63,5

¹⁾ Bestellcode SMH100-B5/14: " SMH100-LL-ET... " (der Motorwellendurchmesser wird durch die Bezeichnung "ET" ersetzt) (nicht im Motorenkatalog) nur mit Feedback: Resolver, A7

Motoren stets mit Paßfedernut an der Abtriebswelle. Weitere Motoranbauoptionen auf Anfrage.

Details im Internet: Motoren

www.parker.com/eme/smh www.parker.com/eme/mh www.parker.com/eme/nx www.parker.com/eme/ex

Getriebe

www.parker.com/eme/gear

Abmessungen [mm]

					Motorabm	Motora	anbauop	tionen		
	inline	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	L1	L2	
		K1E	SMH82-B5/19	95	115	19	40	94,5	100	
		K1E	SMH100-B5/19	95	115	19	40	94,5	100	
		K1E	MH105-B5/19	95	115	19	40	94,5	100	
		K1D	MH105-B9/19	80	100	19	40	94,5	96	
		K1D	SMH82-B8/19	80	100	19	40	94,5	96	
		K1D	NX4, EX4	80	100	19	40	94,5	96	
		K1K	MH145-B5/24	130	165	24	50	104,5	145	
	<u>L1</u>	K1K	SMH142-B5/24	130	165	24	50	104,5	145	
		K1J	MH105-B6/24	110	130	24	50	104,5	116	
		K1J	SMH115-B7/24	110	130	24	50	104,5	116	
		K1J	NX6, EX6	110	130	24	50	104,5	116	
		P1B	PS90	80	100	22	52	106,5	95	
ETH080		P1H	PE4	80	100	20	40	94,5	95	/
盲	parallel	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	PD3	PD4	PD5
		K1E	SMH82-B5/19	95	115	19	40		15	100
		K1E	SMH100-B5/19	95	115	19	40		15	100
		K1E	MH105-B5/19	95	115	19	40		15	100
		K1D	MH105-B9/19	80	100	19	40		15	96
	PD4	K1D	SMH82-B8/19	80	100	19	40		15	96
	8	K1D	NX4, EX4	80	100	19	40		15	96
		K1K	MH145-B5/24	130	165	24	50	130	15	145
		K1K	SMH142-B5/24	130	165	24	50		15	145
		K1J	MH105-B6/24	110	130	24	50		15	116
		K1J	SMH115-B7/24	110	130	24	50		15	116
		K1J	NX6, EX6	110	130	24	50		15	116
		P1B	PS90	80	100	22	52		30	95
	" P 01 1	P1H	PE4	80	100	20	40		12	95

Motoren stets mit Paßfedernut an der Abtriebswelle. Weitere Motoranbauoptionen auf Anfrage.

Details im Internet: Motoren

www.parker.com/eme/smh www.parker.com/eme/mh www.parker.com/eme/nx www.parker.com/eme/ex

Getriebe

www.parker.com/eme/gear

					Motorabr	messungen		Motor	anbauop	tionen
	inline	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	L1	L2	
		K1H	SMH100-B5/24	95	115	24	50	155	140	
		K1H	MH105-B5/24	95	115	24	50	155	140	
		K1J	SMH115-B7/24, NX6, EX6	110	130	24	50	155	140	
		K1K	SMH142-B5/24	130	165	24	50	155	145	
		K1K	MH145-B5/24	130	165	24	50	155	145	
		K1L	MH205-B5/38	180	215	38	80	185	205	
	r "	K1L	SMH170-B5/38	180	215	38	80	185	205	
		P1C	PS115	110	130	32	68	175	140	
		P1D	PS142	130	165	40	102	207	142	/
ETH100		P1J	PE5	110	130	25	55	160	140	
盲	parallel	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	PD3	PD4	PD5
		K1H	SMH100-B5/24	95	115	24	50		23	155
		K1H	MH105-B5/24	95	115	24	50		23	155
		K1J	SMH115-B7/24, NX6, EX6	110	130	24	50		23	155
	PD4	K1K	SMH142-B5/24	130	165	24	50		22	155
	P05	K1K	MH145-B5/24	130	165	24	50	176	22	155
		K1L	MH205-B5/38	180	215	38	80	170	27	205
		K1L	SMH170-B5/38	180	215	38	80		27	205
		P1C	PS115	110	130	32	68		38	155
		P1D	PS142	130	165	40	102		45	155
		P1J	PE5	110	130	25	55		23	155

Motoren stets mit Paßfedernut an der Abtriebswelle. Weitere Motoranbauoptionen auf Anfrage.

					Motorabm	essungen		Motora	anbauop	tionen
	inline	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	L1	L2	
		K1L	SMH170	180	215	38	80	209,5	205	
		K1L	MH205	180	215	38	80	209,5	205	
		K1M	MH265	250	300	48	110	239,5	264	
		P1C	PS115	110	130	32	68	197,5	170	
		P1D	PS142	130	165	40	102	231,5	170	
ETH125		P1K	PE7	120	140	40	97	226,5	205	/
븁	parallel	Code	Motor / Getriebe	Passrand	Lochkreis	Ø Welle	Wellenlänge	PD3	PD4	PD5
		K1L	SMH170	180	215	38	80		25	205
	PD4	K1L	MH205	180	215	38	80		25	205
	802	K1M	MH265	250	300	48	110	224	45	264
		P1C	PS115	110	130	32	68	224	32	185
		P1D	PS142	130	165	40	102		45	185
		P1K	PE7	120	140	40	97		42	205

Weitere Motoranbauoptionen auf Anfrage.

Details im Internet: Motoren

www.parker.com/eme/smh www.parker.com/eme/mh www.parker.com/eme/nx www.parker.com/eme/ex

Getriebe

www.parker.com/eme/gear

Motor- und Getriebeauslegung

Berechnung der Antriebsmomente

Die von dem Motor aufzubringenden Drehmomente ergeben sich aus dem Beschleunigungs-, dem Last- und dem Reibungsmoment. Die Berechnung der Antriebsmomente muss für alle Segmente des Applikationszyklus (dargestellt durch den Index "j") durchgeführt werden

Berechnung des Beschleunigungsmoment aufgrund der rotatorischen Trägheitsmomente:

$$M_{B,j} = \left(J_{i/p,0} + J_{i/p,Hub} \bullet Hub \right) \bullet \frac{1}{\eta_{\text{ETH}}} \bullet \frac{1}{i_{\text{G}}^2 \bullet \eta_{\text{G}}} + J_{\text{G}} + J_{\text{M}} \right) \bullet 10^{-3} \bullet \frac{6,28 \bullet a_{\kappa,j}}{P_{\text{h}}}$$
Formel 5

Die Beschleunigungskräfte aufgrund der translatorisch bewegten Massen werden bereits bei der Berechnung der axialen Kräfte auf (Seite 11) berücksichtigt.

Die **Lastmomente** resultieren aus den auftretenden Axialkräften:

$$M_{L,j} = \frac{F_{x,a/e,j}}{\text{Kraftkonstante}} \bullet \frac{1}{i_G \bullet \eta_G}$$
nur bei Getriebe

Formel 6

Der Motor muss somit folgende Antriebsmomente aufbringen:

$$M_{M,j} = M_{B,j} + M_{L,j}$$

Formel 7

Aus den für alle Segmente des Applikationszyklus ermittelten Antriebsmomenten (Formel 7) kann das **Effektivmoment** berechnet werden:

$$\mathsf{M}_{\mathsf{eff}} = \sqrt[2]{\frac{1}{t_{\mathsf{total}}} \bullet (\mathsf{M}_{\mathsf{M1}}^2 \bullet t_1 + \mathsf{M}_{\mathsf{M2}}^2 \bullet t_2 + \dots)}$$
 Formel 8

Motorauslegung

- Das Nennmoment des Motors muss größer als das berechnete Effektivmoment (Formel 8) sein.
- Das Spitzenmoment des Motors muss größer sein als das maximal auftretende Antriebsmoment (Formel 7) sein.

Mithilfe der Tabelle
"Motoranbauoptionen" wird geprüft,
ob der jeweilige Motor an den
entsprechenden Elektrozylinder
mechanisch angebaut werden kann.

Verwendete Abkürzungen (Formel 5-8)

M_{B,j} = Variables Beschleunigungsmoment in Nm

 $J_{\text{l/p,0}}^{\text{J}_{\text{d}}}$ = Red. rot. Massenträgheitsmoment bei Nullhub für Motoranbau inline/parallel in kgmm² siehe "Technische Daten" Seite 8

 $J_{l/p,\; Hub} = \text{Red. rot. } Massenträgheitsmoment pro mm Hub für Motoranbau inline/parallel in kgmm² siehe "Technische Daten" Seite 8$

Hub = Gewählter Hub in mm

η_{ETH} = Wirkungsgrad des Elektrozylinders 0,9 (Motor inline) 0,81 (Motor parallel)

i_G = Getriebeübersetzung

η_G = Wirkungsgrad des Getriebes (siehe Angaben des Getriebeherstellers)

J_M = Massenträgheitsmoment des Motors in kgmm² (siehe Angaben des Motorenherstellers)
 J_G Massenträgheitsmoment des Getriebes in kgmm² (siehe Angaben des Getriebeherstellers)

 $a_{K,j}$ = Beschleunigung an der Kolbenstange in m/s²

P_h = Steigung der Spindel in mm

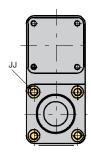
M_{L,j} = Lastmoment in Nm

 $F_{x,a/e,j}$ = Belastungen in x-Richtung in N siehe Seite 11

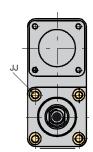
M_{M,j} = Antriebsmoment in Nm
M_{eff} = Effektivwert - Motor in Nm
t_{total} = Gesamtzykluszeit in s
t_i = Zeitanteil im Zyklus in s

Kraftkonstante: "Technische Daten" siehe Seite 8.

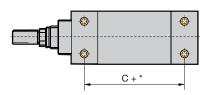
Index "j" für die einzelnen Segmente des Applikationszyklus


Montagearten

Bitte beachten Sie die Hinweise im ETH-Handbuch (19x-550002) bzgl. der zulässigen Schrauben und Anzugsdrehmomente.


Standard

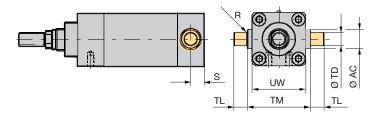
ETH032-ETH125


Beispielskizze bei Motoranbau parallel

Montage über Gewinde am Zylinder stirnseitig bzw endseitig bei Parallelantrieb (ETH032-ETH125).

("Abmessungen" siehe Seite 21)

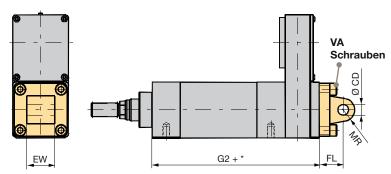
ETH032-ETH080



Montage über 4 zylindereigene Montagegewinde an der Unterseite. (ETH032-ETH080).

("Abmessungen" siehe Seite 21)

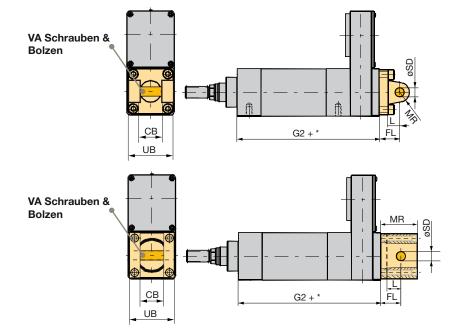
Schwenkzapfen


	UW	ØTD (h8)	R	TL	TM	ØAC	S
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ETH032	46,5	12	1	12	50	18	25,5
ETH050	63,5	16	1	16	75	25	39
ETH080	95,3	25	2	25	110	35	34,5
ETH100	120	40	4	40	140	70	57
ETH125	150	50	10	52	160	90	100

^{+* =} Maßangabe + Länge gewünschter Hub ("Abmessungen" siehe Seite 21). Hinweis: Die Nachschmieroption "1" (zentrale Nachmiermöglichkeit) befindet sich bei der Montageart mit Option "D" Schwenkzapfen immer auf 6 Uhr!

Schwenkflansch mit Bohrung

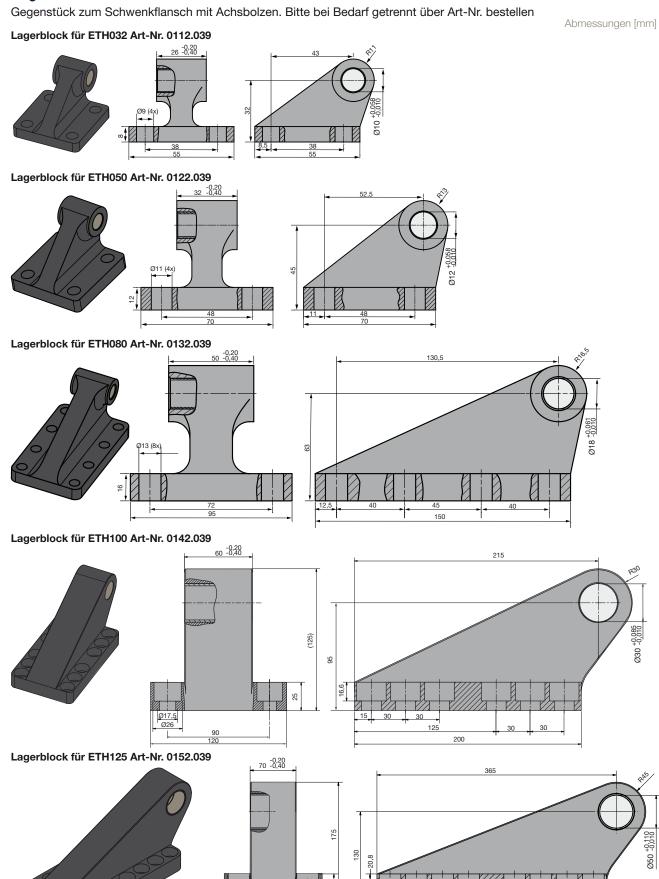
	Art-Nr.	EW	ØCD	MR	FL ±0,2
		[mm]	[mm]	[mm]	[mm]
ETH032	0112.033	26	10 +0,058 -0,010	11	22
ETH050	0122.033	32	12 +0,058 -0,010	13	27
ETH080	0132.033	50	16 ^{+0,058} _{-0,010}	17	36
ETH100	0142.033	60	30 +0,085 -0,010	35	80
ETH125	0152.033	70	50 +0,110 -0,010	45	115


 $+^*$ = Maßangabe + Länge gewünschter Hub ("Abmessungen" siehe Seite 21). Im Bestellschlüssel des Zylinders gelistet, die angegebene Art-Nr. nur für Ersatzteilbestellung notwendig. Die Ersatzteil - Lieferung erfolgt inklusive der Schrauben zur Befestigung am Zylinder.

Schwenkflansch mit Achsbolzen

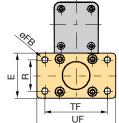
ETH032-ETH080

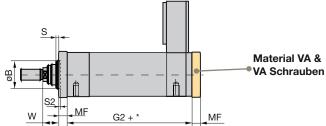
ETH100 & ETH125



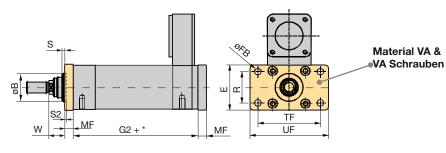
	Art-Nr.	UB	СВ	ØSD	MR	L	FL ±0,2
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ETH032	0112.031	46,5	26	10 h9	9,5	13	22
ETH050	0122.031	63,5	32	12 h9	12,5	16	27
ETH080	0132.031	95	50	16 h9	17,5	22	36
ETH100	0142.031	120	60,5	30 f7	100	40	65
ETH125	0152.031	150	70,5	50 f7	145	55	90

 $+^*$ = Maßangabe + Länge gewünschter Hub ("Abmessungen" siehe Seite 21). Im Bestellschlüssel des Zylinders gelistet, die angegebene Art-Nr. nur für Ersatzteilbestellung notwendig. Die Ersatzteil - Lieferung erfolgt inklusive der Schrauben zur Befestigung am Zylinder.

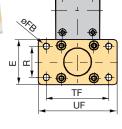

Lagerblock

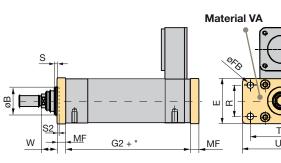


Endplatte



Frontplatte



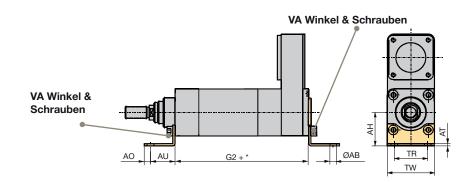

Front- und Endplatte

Abmessungen für Endplatte (H) und Frontplatte (J)

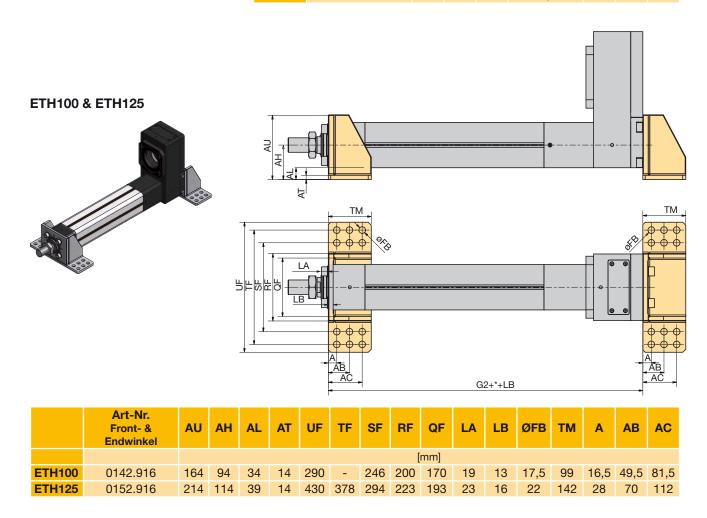
				-								
	Art-Nr. (1Stück)	UF	Е	TF	ØFB	R	W	MF	ØB Endplatte	ØB Frontplatte	S	S2
		[mm]	[mm]	[mm]	[mm]							
ETH032	0112.918	80	48	64	7	32	16	10	30		2	-
ETH050	0122.918	110	65	90	9	45	25	12	40		4	-
ETH080	0132.918 (Endplatte) 0132.919 (Frontplatte)	150	95	126	12	63	30	16	45	60	4	-
ETH100	0142.918	258	120	220	17,5	80	26	25	90		-	5
ETH125	0152.918	320	150	270	21,5	100	13	40	110		-	20

+* = Maßangabe + Länge gewünschter Hub ("Abmessungen" siehe Seite 21). Im Bestellschlüssel des Zylinders gelistet, die angegebene Art-Nr. nur für Ersatzteilbestellung notwendig.

Bei Ersatzteilbestellung sind Front- und Endplatte einzeln zu bestellen. Die Ersatzteil - Lieferung erfolgt inklusive der Schrauben zur Befestigung am Zylinder.


Teile in VA-Ausführung nur für ETH032-ETH100.

Fußmontage



ETH032-ETH080

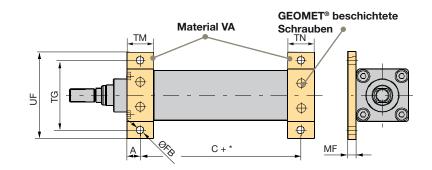
	Art-Nr. Front- & Endwinkel	АН	AT	TR	ØAB (H14)	AO	AU	TW		
			[mm]							
ETH032	0112.916	32	4	32	7	8	24	46,5		
ETH050	0122.916	45	4	45	9	12	32	63,5		
ETH080	0132.916	63	6	63	13,5	15	41	95		

^{+* =} Maßangabe + Länge gewünschter Hub ("Abmessungen" siehe Seite 21).

Im Bestellschlüssel des Zylinders gelistet, die angegebene Art-Nr. nur für Ersatzteilbestellung notwendig. Die Ersatzteil - Lieferung erfolgt inklusive der Schrauben zur Befestigung am Zylinder.

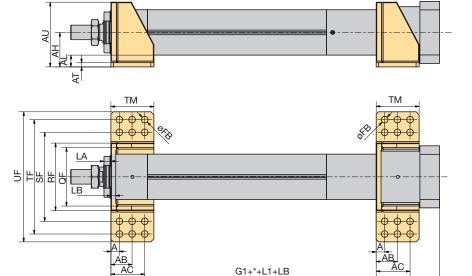
Teile in VA-Ausführung nur für ETH032-ETH080.

Zur Befestigung des Zylinders bei Schutzart "B" und "C" werden GEOMET® beschichtete Schrauben (dünnschichtiger Korrosionsschutz) empfohlen.


Montageplatten

ETH032-ETH080

Montageplatten



	Art-Nr. (2Stück)	TG	UF	ØFB	ТМ	MF	Α	AB	TN	В	вв	ВС
			[mm]									
ETH032	0112.917	62	78	6,6	25	8	12,5	-	25	-	-	-
ETH050	0122.917	84	104	9	30	10	15	-	30	-	-	-
ETH080	0132.917	120	144	13,5	40	12	20	-	40	-	-	-

ETH100 & ETH125

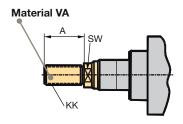
	Art-Nr.	AU	AH	AL	AT	UF	TF	SF	RF	QF	LA	LB	ØFB	TM	Α	AB	AC
									[m	ım]							
ETH100	_ 1)	164	94	34	14	290	-	246	200	170	19	13	17,5	99	16,5	49,5	81,5
ETH125	_ 1)	214	114	39	14	430	378	294	223	193	23	16	22	142	28	70	112

Im Bestellschlüssel des Zylinders gelistet, die angegebene Art-Nr. nur für Ersatzteilbestellung (nur ETH032-ETH080) notwendig. Die Ersatzteil - Lieferung erfolgt inklusive der Schrauben zur Befestigung am Zylinder.

Teile in VA-Ausführung nur für ETH032-ETH080.

Zur Befestigung des Zylinders bei Schutzart "B" und "C" werden GEOMET® beschichtete Schrauben (dünnschichtiger Korrosionsschutz) empfohlen.

^{+* =} Maßangabe + Länge gewünschter Hub ("Abmessungen" siehe Seite 21).


¹⁾ eine nachträgliche Umrüstung kann nur bei Parker durchgeführt werden.

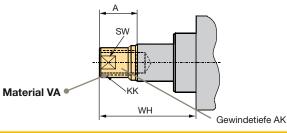
Ausführung der Kolbenstange

Außengewinde

	Außengewinde (Lieferzustand)												
	Masse	Α	KK	SW ¹⁾									
	[kg]	[mm]	[mm]	[mm]									
ETH032	0,06	22	M10x1,25	10									
ETH050	0,15	32	M16x1,5	17									
ETH080	0,48	40	M20x1,5	22									
ETH100	2,4	70	M42x2	46									
ETH125	3,7	96	M48x2	55									

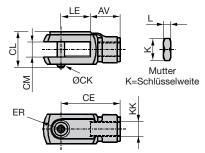
1) SV	V: Schlüssel	weite (Positio	n der Sch	lüsselfläche r	nicht fest	definiert)

	Mutter												
	Masse	M	L	K ¹⁾									
	[kg]	[mm]	[mm]	[mm]									
ETH032	0,01	M10x1,5	5	17									
ETH050	0,02	M16x1,5	8	24									
ETH080	0,04	M20x1,5	10	30									
ETH100	0,27	M42x2	16	65									
ETH125	0,60	M48x2	24	75									


¹⁾ K: Schlüsselweite

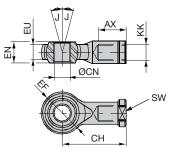
Die Mutter ist im Lieferumfang enthalten.

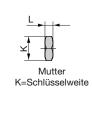
Innengewinde


	Innengewinde												
	Masse	Α	KK (Option F)	KK (Option K)	AK	WH	SW¹)						
	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]						
ETH032	0,04	14	M10x1,25		20	32	12						
ETH050	0,14	24	M16x1,5		25	50	20						
ETH080	0,42	29	M20x1,5		35	59	26						
ETH100	2,2	60	M42x2	M45x3	50	92	60						
ETH125	4,3	90	M48x2	M45x3	60	123	70						

1) SW: Schlüsselweite (Position der Schlüsselfläche nicht fest definiert)

Gabelkopf

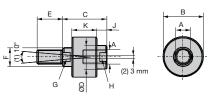

	Art-Nr.		Masse KK	KK	CL	СМ		LE	CE	AV	ER	ØCK	K	
	Standard	VA	Masse	IXIX	OL	CIVI			OL	~~	LN	(h11/E9)	K	-
			[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ETH032	4309	P1S-4JRD	0,09	M10x1,25	26,0	10,2	+0,13 -0,05	20	40	20	14	10	17	5
ETH050	4312	P1S-4MRD	0,34	M16x1,5	39,0	16,2	+0,13 -0,05	32	64	32	22	16	24	8
ETH080	4314	P1S-4PRD	0,69	M20x1,5	52,5	20,1	+0,02 -0,0	40	80	40	30	20	30	10


Im Bestellschlüssel des Zylinders gelistet, Art-Nr. nur für Ersatzteilbestellung. Voraussetzung Kolbenstange mit Außengewinde. Verfügbar für ETH032-ETH080.

Kugelkopf

	Art-Nr.		Masse	KK	SW ¹⁾	ØCN	EN	EU	AX	СН	ØEF		К	
	Standard	Standard VA			344	ØCI4	LIV	LO	AA	СП	ØEF	J	- 1	_
			[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[mm]	[mm]
ETH032	4078-10	P1S-4JRT	0,07	M10x1,25	17	10 H9	14	10,5	20	43	28	13	17	5
ETH050	4078-16	P1S-4MRT	0,23	M16x1,5	22	16 H9	21	15,0	28	64	42	15	24	8
ETH080	4078-20	P1S-4PRT	0,41	M20x1,5	32	20 H9	25	18,0	33	77	50	14	30	10
ETH100	0142.920-01	0142.920-02	2,8	M42x2	60	40 H7	49	7	60	142	90	16	65	15
ETH125	0152.920-01	nicht verfügbar	5,0	M48x2	65	50 H7	60	45	65	160	116	14	75	24

Im Bestellschlüssel des Zylinders gelistet, Art-Nr. nur für Ersatzteilbestellung. Voraussetzung Kolbenstange mit Außengewinde.

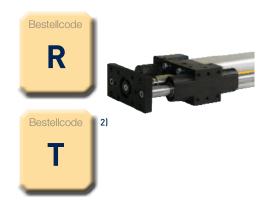

Flexible Kupplung

Zur Montage am Kolbenstangenende

- Gleicht Fluchtungsfehler aus
- Vergrößert die Montagetoleranz
- Vereinfacht den Zylinderanbau
- Vergrößert die Lebensdauer der Zylinderführungen
- Kompensiert Versatz zwischen Komponenten und entlastet die Führungen von Seitenkrafteinflüssen
- Die Zug-/Druckkraftbelastbarkeit bleibt erhalten

- (1): Winkelversatz (2): Axialversatz
- E: Gewindetiefe

	Art-Nr.	Masse	Α	В	С	ØD	Е	F	G	Н	J	K
		[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ETH032	LC32-1010	0,26	M10x1,25	40	51	19	19	16	13	16	13	26
ETH050	LC50-1616	0,64	M16x1,5	54	59	32	29	25	22	29	14	33
ETH080	LC80-2020	1,30	M20x1,5	54	59	32	29	25	22	29	14	33
ETH100	_1)	4,5	M39x2 ²⁾	101,6	111,1	57,2	57,2	44,5	38	49	22,2	69,9
ETH125	0152.921	9,0	M48x2	127	142,9	76,2	76,2	57,2	49,3	67	35	85,8


Im Bestellschlüssel des Zylinders gelistet, Art-Nr. nur für Ersatzteilbestellung. Voraussetzung Kolbenstange mit Außengewinde. Nur in Schutzart-Option A (IP54 verzinkte Schrauben) erhältlich.

¹⁾ SW: Schlüsselweite (Position der Schlüsselfläche nicht fest definiert)

¹⁾ eine nachträgliche Umrüstung von Kolbenstangenende M auf L ist NICHT möglich.

²⁾ Achtung: Das Gewinde M39x2 weicht vom Standard (M42x2) ab.

Stangenführung

Funktion der Stangenführung:

- Zusätzliche Stabilität und Genauigkeit
- Verdrehsicherung bei h\u00f6heren Momenten
- Aufnahme von Seitenkräften

Ausführungen

Option R:

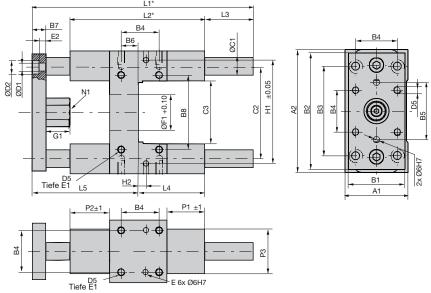
Stangenführung mit Kugelbuchsen (nur in Schutzart Option A verfügbar, "Bestellschlüssel" siehe Seite 52)

- · Grundkörper aus Aluminium
- 2 Führungsstangen aus Stahl, Oberfläche hartverchromt
- Linearkugellager

Option T: 2)

Stangenführung mit Gleitführung (für alle Schutzart Optionen, Standard bei Option B & C, "Bestellschlüssel" siehe Seite 52)

- Grundkörper aus Aluminium
- 2 Führungsstangen aus Edelstahl rostarm
- Gleitführungen

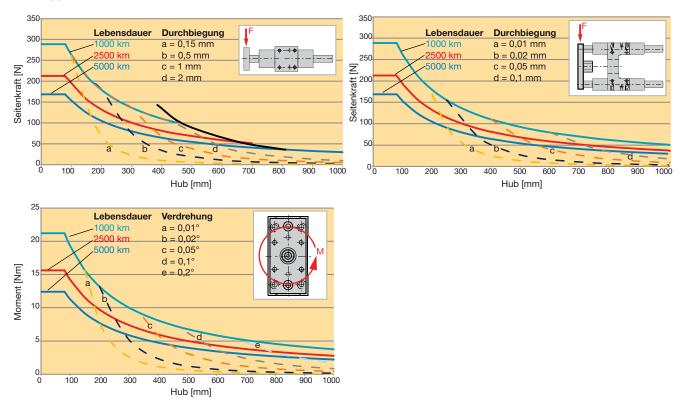

Bei der Antriebsauslegung eines ETH-Zylinders mit einer Stangenführung mit Gleitlagern muss ein erhöhter Reibungsverlust in den Gleitlagern berücksichtigt werden

Hinweis:

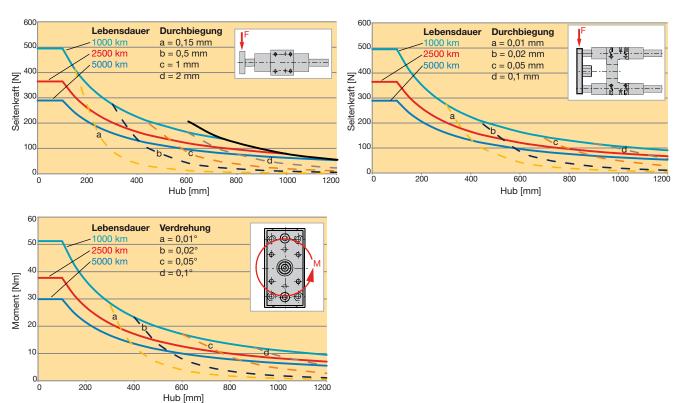
- 1) xxxx entspricht dem kundenspezifischen Hub. Zur Ermittlung dieses Wertes kontaktieren Sie bitte Parker.
- +* = Maßangabe + Länge gewünschter Hub ("Abmessungen" siehe Seite 21).

Verfügbar für ETH032-ETH080. Für den ETH080 können die Standard-Pneumatik-Stangenführungsmodule nicht verwendet werden.

2) nicht für ATEX

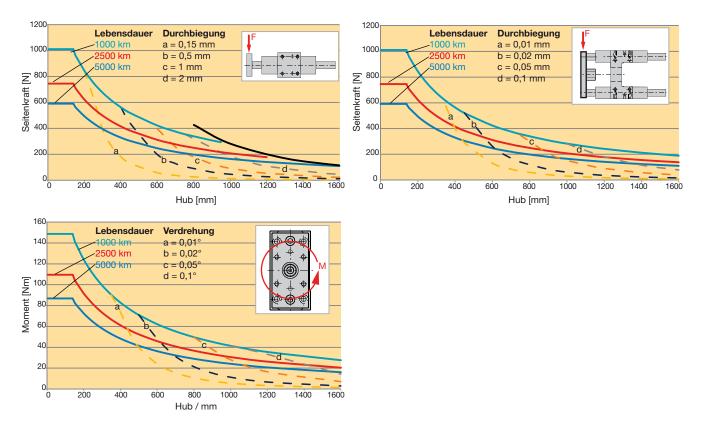


ArtNr Option R ¹⁾ 0112.040-xxxx 0122.040-xxxx 0132.040-xxxx ArtNr Option T ¹⁾ 0112.041-xxxx 0122.041-xxxx 0132.041-xxxx A1 [mm] 50 70 105 A2 [mm] 97 137 189 B1 [mm] 45 63 100 B2 [mm] 90 130 180 B3 [mm] 78 100 130 B4 [mm] 32,5 46,5 72 B5 [mm] 50 72 106 B6 [mm] 4 19 21 B7 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 66 9 11 ØD2 [mm] 73,5 103,5 147 C3 [mm] 6,6 9 11 ØD2 [mm] 10 10 10		Einheit	ETH032	ETH050	ETH080
A1 [mm] 50 70 105 A2 [mm] 97 137 189 B1 [mm] 97 137 189 B1 [mm] 45 63 100 B2 [mm] 90 130 180 B3 [mm] 78 100 130 B4 [mm] 78 100 130 B4 [mm] 50 72 106 B6 [mm] 50 72 106 B6 [mm] 4 19 21 B7 [mm] 12 15 20 B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10	ArtNr Option R 1)		0112.040-xxxx	0122.040-xxxx	0132.040-xxxx
A2 [mm] 97 137 189 B1 [mm] 45 63 100 B2 [mm] 90 130 180 B3 [mm] 78 100 130 B4 [mm] 78 100 130 B4 [mm] 50 72 106 B6 [mm] 50 72 106 B6 [mm] 4 19 21 B7 [mm] 12 15 20 B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 7 9 11	ArtNr Option T 1)		0112.041-xxxx	0122.041-xxxx	0132.041-xxxx
A2 [mm] 97 137 189 B1 [mm] 45 63 100 B2 [mm] 90 130 180 B3 [mm] 78 100 130 B4 [mm] 78 100 130 B4 [mm] 32,5 46,5 72 B5 [mm] 50 72 106 B6 [mm] 4 19 21 B7 [mm] 4 19 21 B7 [mm] 12 15 20 B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 <	A1	[mm]	50	70	105
B2 [mm] 90 130 180 B3 [mm] 78 100 130 B4 [mm] 32,5 46,5 72 B5 [mm] 50 72 106 B6 [mm] 4 19 21 B7 [mm] 4 19 21 B7 [mm] 61 85 130 B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30	A2	[mm]	97	137	189
B3 [mm] 78 100 130 B4 [mm] 32,5 46,5 72 B5 [mm] 50 72 106 B6 [mm] 4 19 21 B7 [mm] 4 19 21 B8 [mm] 6 8 130 ØC1 [mm] 12 20 25 C2 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 7 9	B1	[mm]	45	63	100
B4 [mm] 32,5 46,5 72 B5 [mm] 50 72 106 B6 [mm] 4 19 21 B7 [mm] 4 19 21 B7 [mm] 12 15 20 B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 <th>B2</th> <th>[mm]</th> <th>90</th> <th>130</th> <th>180</th>	B2	[mm]	90	130	180
B5 [mm] 50 72 106 B6 [mm] 4 19 21 B7 [mm] 12 15 20 B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7	B3	[mm]	78	100	130
B6 [mm] 4 19 21 B7 [mm] 12 15 20 B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 </th <th>B4</th> <th>[mm]</th> <th>32,5</th> <th>46,5</th> <th>72</th>	B4	[mm]	32,5	46,5	72
B7 [mm] 12 15 20 B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247		[mm]			
B8 [mm] 61 85 130 ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247		[mm]	-		
ØC1 [mm] 12 20 25 C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247					
C2 [mm] 73,5 103,5 147 C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247					
C3 [mm] 50 70 105 ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247					
ØD1 [mm] 6,6 9 11 ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247			-,-	, -	
ØD2 [mm] 11 14 17 D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247					
D5 [mm] M6 M8 M10 E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247				•	
E (Tiefe) [mm] 10 10 10 E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247					
E1 (Tiefe) [mm] 12 16 20 E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247					
E2 (Tiefe) [mm] 7 9 11 ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247					
ØF1 [mm] 30 40 60 G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247	· ,				
G1 [mm] 17 27 32 H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247			-	_	
H1 [mm] 81 119 166 H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247					
H2 [mm] 11,7 4,2 15 L1+* [mm] 150 192 247	-				
L1+* [mm] 150 192 247					
				,	
L3+* [mm] 15 24 24					
L4 [mm] 71 79 113					
L5 [mm] 64 89 110					
N1 [mm] 17 24 30					
P1 [mm] 36 42 50					
P2 [mm] 31 44 52					
P3 [mm] 40 50 70					
Gesamtmasse Nullhub [kg] 0,97 2,56 6,53					
Bewegte Masse Nullhub [kg] 0,60 1,84 4,36					
Zusatzmasse [kg/m] 1,78 4,93 7,71	<u> </u>			,	,

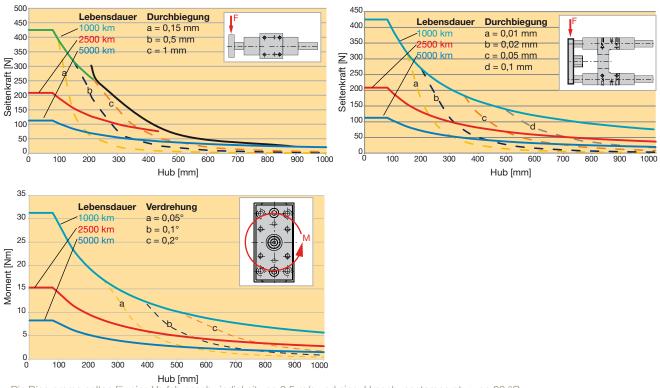

Zulässige Belastung / Lebensdauer / Verformung der Parallelführung

Stangenführung mit Kugelbuchsen (Option R)

ETH032

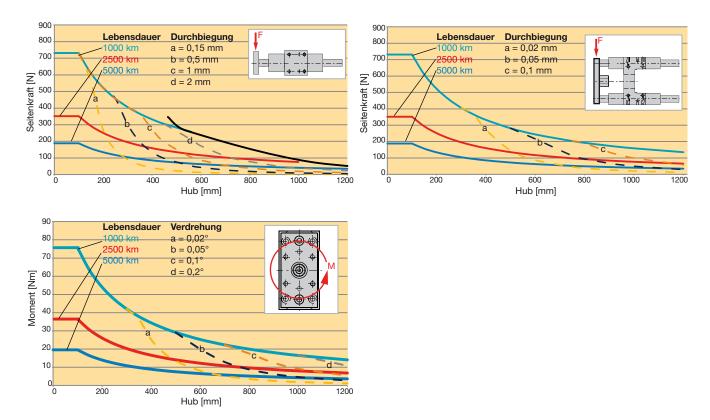

ETH050

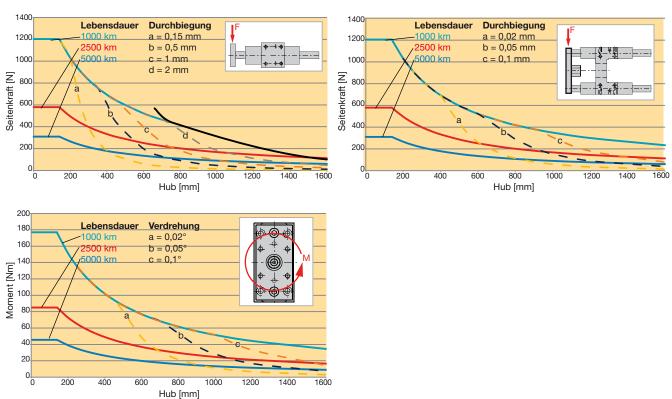
Die Diagramme gelten für eine Verfahrgeschwindigkeit von 0,5 m/s und einer Umgebungstemperatur von 20 °C.


Stangenführung mit Kugelbuchsen (Option R)

ETH080

Stangenführung mit Gleitführung (Option T)


ETH032


Die Diagramme gelten für eine Verfahrgeschwindigkeit von 0,5 m/s und einer Umgebungstemperatur von 20 $^{\circ}$ C.

Stangenführung mit Gleitführung (Option T)

ETH050

ETH080

Die Diagramme gelten für eine Verfahrgeschwindigkeit von 0,5 m/s und einer Umgebungstemperatur von 20 °C.

Zubehör

Kraftsensoren - Gelenkkopf mit integriertem Kraftsensor, mit optionalem Gelenkkopf

Gelenkköpfe stellen in Verbindung mit Dreh-, Schwenk- und Kippbewegungen wichtige Konstruktionselemente dar. Immer häufiger sollen in solchen Anwendungen Kräfte gemessen werden.

Die Kraftaufnehmer können direkt an der Kolbenstange des Zylinders montiert werden. So können sie beispielsweise zur Messung von An-/ Einpresskräften oder Überlasten verwendet werden.

Dank Dünnschichttechnologie sind die Gelenkkopf-Kraftaufnehmer sehr robust und langzeitstabil. Ein integrierter Verstärker liefert ein Ausgangssignal von 4...20 mA. Die Aufnehmer genügen der Norm EN 61326 für elektromagnetischen Verträglichkeit (EMV) und sind als Zug-/Druckaufnehmer dimensioniert.

Merkmale

- Messbereich: Zug-/Druckkräfte bis ±114 kN
- Dünnfilmimplantate (statt konventioneller Dehnungsmessstreifen)
- Korrosionsbeständige Edelstahlausführung
- Integrierter Verstärker
- Kleiner Temperaturgang

- Große Langzeitstabilität
- Große Schock- und Vibrationsfestigkeit
- Für dynamische oder statische Messungen

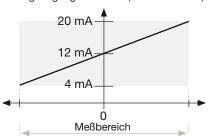
Rundsteckverbinder

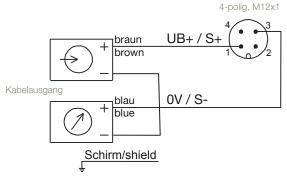
- Gute Reproduzierbarkeit
- Einfache Montage

Anbindung der Kraftsensoren an Compax3 mit Option M21 möglich

Technische Daten

			Gelenkkopf mit integriertem Kraftsensor									mit Auße	ngewinde
	Einheit		ETH032		ETH050				ETH080		ETH100	ETH	1125
		M05	M10	M16	M05	M10	M20	M05	M10	M32	M10/M20	M10	M20
Genauigkeit	[%]					0,2						1	
Material	-					Edelstah	l				E	delstahl	
Schutzart	-					IP67						IP67	
Messbereich	[kN]	±3,7	±3,7	±2,4	±9,3	±7,0	±4,4	±17,8	±25,1	±10,6	±56,0	±88,7	±114,0
Genauigkeit	[N]	14,8	14,8	9,6	37,2	28,0	17,6	71,2	100,4	42,4	1120	1774	2280
ArtNr.	-	0111.916		0111.917	0121.916	0121.917	0121.918	0131.916	0131.917	0131.918	0141.916	0141.917	0141.918

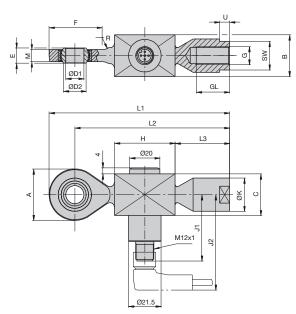

Für ETH032-ETH080: nur möglich bei Kolbenstangenende "M" (Aussengewinde).


Für ETH100, ETH125: nur möglich bei Kolbenstangenende "K"

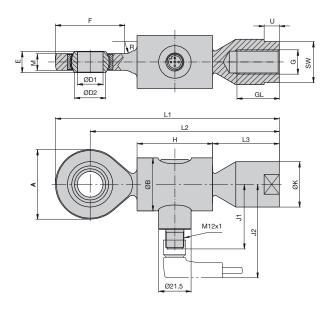
Ein nachträglicher Umbau von einem anderen Kolbenstangenende auf M oder K ist generell NICHT möglich.

Elektrischer Anschluss

Versorgungsspannung UB = 10...30 VDC Analogausgang 4...20 mA (2-Leitertechnik)



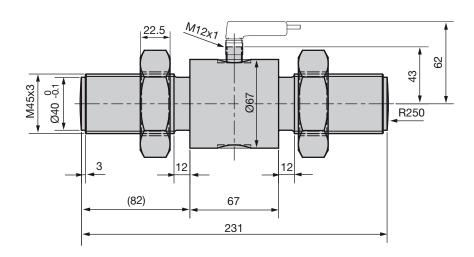
Art-Nr.	Kabel für Kraftsensor
080-900446	Kraftsensorkabel (PUR), Stecker gerade, M12 offene Enden, 2 m
080-900447	Kraftsensorkabel (PUR), Stecker gerade, M12 offene Enden, 5 m
080-900456	Kraftsensorkabel (PUR), Stecker abgewinkelt, M12 offene Enden, 2 m
080-900457	Kraftsensorkabel (PUR), Stecker abgewinkelt, M12 offene Enden, 5 m


¹⁾ ATEX auf Anfrage

Abmessungen [mm]

Ausführung für ETH032

Ausführung für ETH050 & ETH080


Abmessungen [mm]

Abmessungen

	Α	В	ØB	С	ØD1	ØD2 0,008	E	F	G	GL	Н	J1	J2	ØK	L1	L2	L3	M	SW¹)	U
für ETH032	34	27	-	27	12	15	10	35	M10x1,25	21	40	44	63	22	119	102	36	8	19	8
für ETH050	46	-	35	-	17	20,7	14	46	M16x1,5	28	50	43	62	30	148	125	44	11	27	12
für ETH080	53	-	54	-	20	24,2	16	54	M20x1,5	33	54	44	63	35	171	144,5	54	13	32	13

¹⁾ SW: Schlüsselweite

Ausführung für ETH100 & ETH125

Kraftsensoren - Schwenkflansch mit Kraftmessbolzen

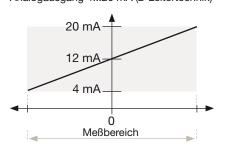
Bei einigen Kraftmessapplikationen ist eine Kraftmessdose an der Kolbenstange nicht realisierbar oder behindert den Wirkungsbereich der Applikation. Genau für diese Fälle wurde, speziell für den ETH-Zylinder, eine Variante entwickelt bei welcher der Kraftaufnehmer im hinteren Bereich des ETH-Zylinders eingebaut ist. Das hat den Vorteil, dass die Anschlussleitungen zum Sensor nicht mitbewegt werden muss. Alle Kraftsensoren sind als Zug-/ Druckaufnehmer dimensioniert. Es stehen analoge Standard-Ausgangssignale 4...20 mA zur Verfügung. Die Aufnehmer genügen der Norm EN 61326 für elektromagnetischen Verträglichkeit (EMV).

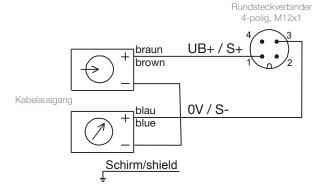
Merkmale

- Messbereich: Zug-/Druckkräfte bis ±81,4 kN
- Dünnfilmimplantate (statt konventioneller Dehnungsmessstreifen)
- Korrosionsbeständige Edelstahlausführung
- Integrierter Verstärker
- Kleiner Temperaturgang

- Große Langzeitstabilität
- Große Schock- und Vibrationsfestigkeit
- Für dynamische oder statische Messungen
- Gute Reproduzierbarkeit
- Einfache Montage

Anbindung der Kraftsensoren an Compax3 mit Option M21 möglich.

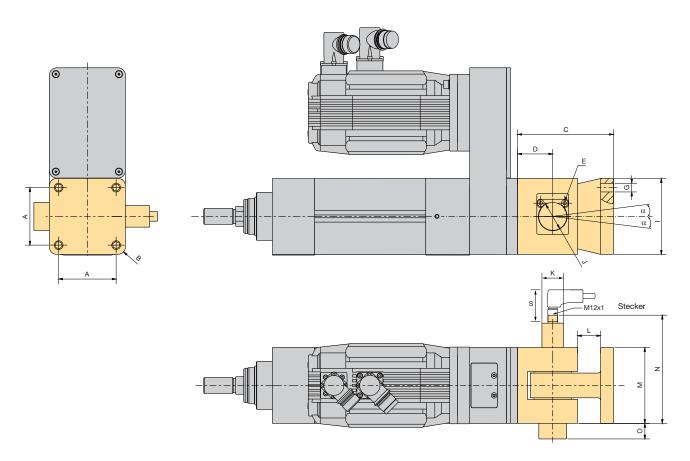

Technische Daten


	Schwenkflansch mit Kraftmessbolzen für ETH											
	Einheit		ETH032			ETH050			ETH080		ETH100	ETH125
		M05	M10	M16	M05	M10	M20	M05	M10	M32	M10/M20	M10/M20
Genauigkeit	[%]					1					2	2
Material	-					Edelstahl					Edel	stahl
Schutzart	-					IP67					IP	67
Messbereich	[kN]	±3,7	±3,7	±2,4	±9,3	±7,0	±4,4	±17,8	±25,1	±10,6	±54,8	±81,4
Genauigkeit	[N]	74,0	74,0	48,0	186,0	140,0	88,0	356,0	502,0	212,0	2192	3256
ArtNr.	-	0112.034-01		0112.034-02	0122.034-01	0122.034-02	0122.034-03	0132.034-01	0132.034-02	0132.034-03	0142.034-01	0152.034-01

Nur möglich für Parallelanbau und Zylinder mit Montageart "F" (Montagegewinde am Zylinderkörper)

Elektrischer Anschluss

Versorgungsspannung UB = 10...30 VDC Analogausgang 4...20 mA (2-Leitertechnik)



Art-Nr.	Kabel für Kraftsensor
080-900446	Kraftsensorkabel (PUR), Stecker gerade, M12 offene Enden, 2 m
080-900447	Kraftsensorkabel (PUR), Stecker gerade, M12 offene Enden, 5 m
080-900456	Kraftsensorkabel (PUR), Stecker abgewinkelt, M12 offene Enden, 2 m
080-900457	Kraftsensorkabel (PUR), Stecker abgewinkelt, M12 offene Enden, 5 m

¹⁾ ATEX auf Anfrage

Ausführung mit Befestigungsflansch für ETH-Zylinder

Abmessungen [mm]

Abmessungen

	Α	В	С	D	E1)	G	- 1	ØJ	ØK	L	M	N	0	S	α
für ETH032	32,5	R7	72	27	SW3	6,6	46,5	20	27	12	46,5	98,25	6,75	19	±3,5°
für ETH050	46,5	R8,5	89	32	SW3	9	63,5	25	27	17	63,5	111,75	3,25	19	±4°
für ETH080	72	R9	123	47	SW4	11	95	35	27	29	95	135,5	0	19	±4°
für ETH100	89	R12,5	166	70	SW6	17	120	50	27	30	120	160,8	4,2	19	±4°
für ETH125	105	R20	196	75	SW6	22	150	50	27	40	150	175,8	0	19	±4°

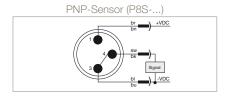
¹⁾ SW: Schlüsselweite

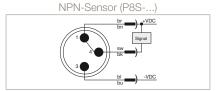
α: max. zulässiger Ausschlagwinkel zur Mittelachse

Bitte beachten Sie die Hinweise im ETH-Handbuch (19x-550002) bzgl. der zulässigen Schrauben und Anzugsdrehmomente.

Initiatoren / Endlagenschalter

Initiatoren


Die Initiatoren zur Positionsbestimmung können in den Längsnuten des Zylinderkörpers montiert werden und sind direkt im Profil versenkbar, daher treten keine Störkanten auf. Die Initiatorleitung wird einfach unter der


gelben Abdeckung versenkt. Die in der Spindelmutter integrierten Dauermagnete betätigen die Initiatoren. Passende Initiatoren sind als Zubehör erhältlich.

ETH032, ETH050 je 2 Nuten auf 2 gegenüberliegenden Seiten. ETH080, ETH100 je 2 Nuten auf allen Seiten.

Für die ETH-Zylinder-Reihe sind folgende Schaltertypen erhältlich:

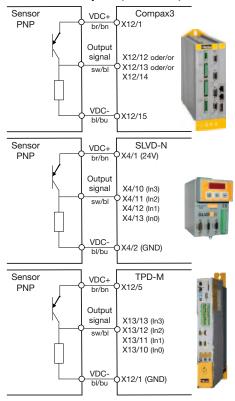
Schaltpunkt

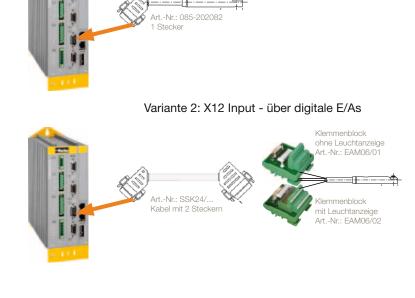
4,3

9,7

L=300

31,5


Abmessungen [mm]


Info: ETH mit Compax3 nur PNP-Typen verwenden.

Magnetische Zylindersensoren

Тур	Funktion	LED	Logik	Kabel	Dauer- strom	Strom- aufnahme	Versorgungs- spannung	Schalt- frequenz	kompatibel mit Compax3 SLVD-N, TPD-M			
P8S-GPFLX			PNP	3 m					ja			
P8S-GNFLX	Schließer		NPN	3 111		max. 10 mA			nein			
P8S-GPSHX	Scrilleber		PNP	0,3 m Leitung mit				1 kHz	ja			
P8S-GNSHX		ja	NPN	M8 Stecker	max. 100 mA		10-30 VDC		nein			
P8S-GQFLX		ja	PNP	3 m					ja			
P8S-GMFLX	Öffner					NPN	3 111					nein
P8S-GQSHX	Offile		PNP	0,3 m Leitung mit					ja			
P8S-GMSHX			NPN						nein			

ETH mit Compax3, SLVD-N, TPD-M

Variante 1: X12 Input - Direkt

¹⁾ ATEX auf Anfrage

Auslegung von Antriebssträngen 1)

Beispiel für die Auslegung mit vordefinierten Antriebssträngen

Um Ihnen die Dimensionierung eines kompletten Antriebsstranges zu erleichtern, sind auf den folgenden Seiten vordefinierte Elektrozylinder, Getriebe, Motoren und Servoantriebe dargestellt.

Sie können mit wenigen Parametern die Bestellinformation (Code) der Komponenten direkt auslesen.

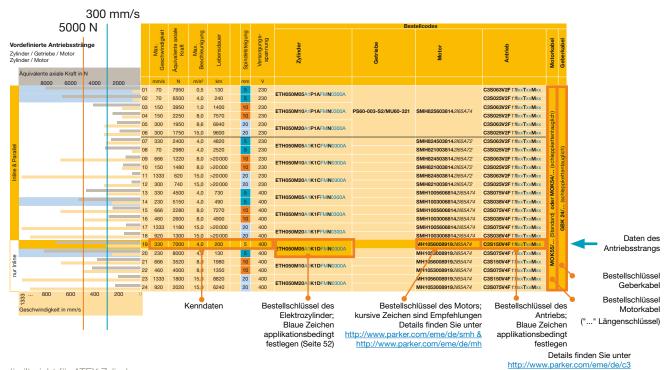
Beachten Sie die Randbedingungen!

Folgende Applikationparameter werden benötigt:

- Die äquivalente axiale Kraft.
 (Berechnung siehe Seite 13 Formel 3 mit den, wie auf Seite 11 beschrieben, ermittelten Kräften).
- · Die maximale Geschwindigkeit.

Arbeiten mit der Tabelle der Antriebsstränge

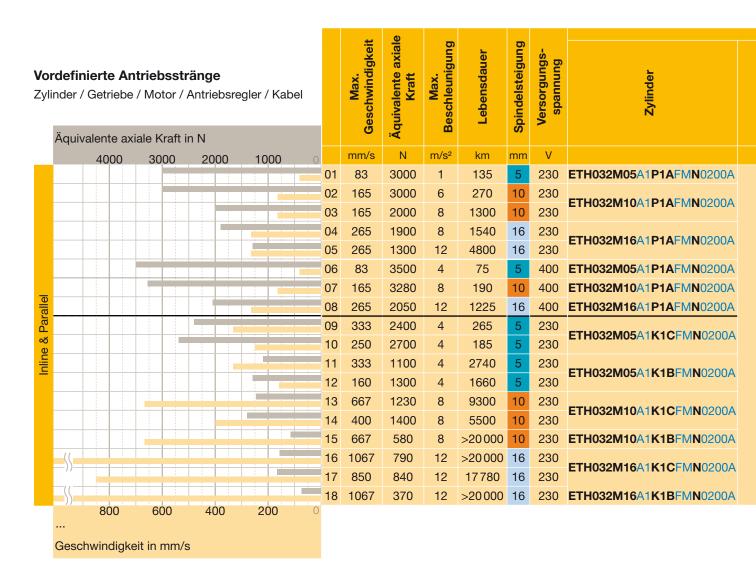
- Wählen Sie die Antriebsstränge aus, die die geforderte axiale Kraft zur Verfügung stellen (z. B. durch eine senkrechte Linie).
- Wählen Sie nun aus dieser Auswahl Antriebsstränge, die mit der benötigten Geschwindigkeit verfahren können (z.B. durch eine 2. senkrechte Linie).
- Der passende Antriebsstrang kann dann aus der verbleibenden Auswahl evtl. durch Vergleich weiterer Kenngrößen gefunden werden.


Bitte prüfen Sie ob alle angegeben Werte (wie max. Beschleunigung, Versorgungsspannung usw.) zu Ihrer Applikation passen.

Beispiel:

Benötigte Daten

Äquivalente axiale Kraft: 5000 N Geschwindigkeit: 300 mm/s


¹⁾ gilt nicht für ATEX Zylinder

Vordefinierte Antriebsstränge ETH032 11

mit Compax3, SLVD-N / TPD-M

Um die Darstellung an dieser Stelle etwas zu vereinfachen, wurden Randbedingungen angenommen, welche ohne Ausnahme bei Ihrer Applikation eingehalten werden müssen, ansonsten kann es sein, dass die hier vorgeschlagenen Produktkombinationen technisch nicht funktionieren. Die Applikation muss dann auf herkömmliche Weise berechnet werden.

¹⁾ gilt nicht für ATEX Zylinder

Randbedingungen:

- Hub zwischen 50 und 400 mm
- Bewegung in horizontaler Richtung
- Die Leistungsdaten/Kennwerte der Produkte dürfen nicht überschritten werden, wie
 - bei Parallelantrieb: übertragbares Moment in Abhängigkeit von der Motordrehzahl n beachten
 - zulässige axiale Druckkräfte beachten
 - Umgebungsbedingungen
 - •
- Lineare Beschleunigung
- Angegebene maximale Beschleunigung = Verzögerungszeiten

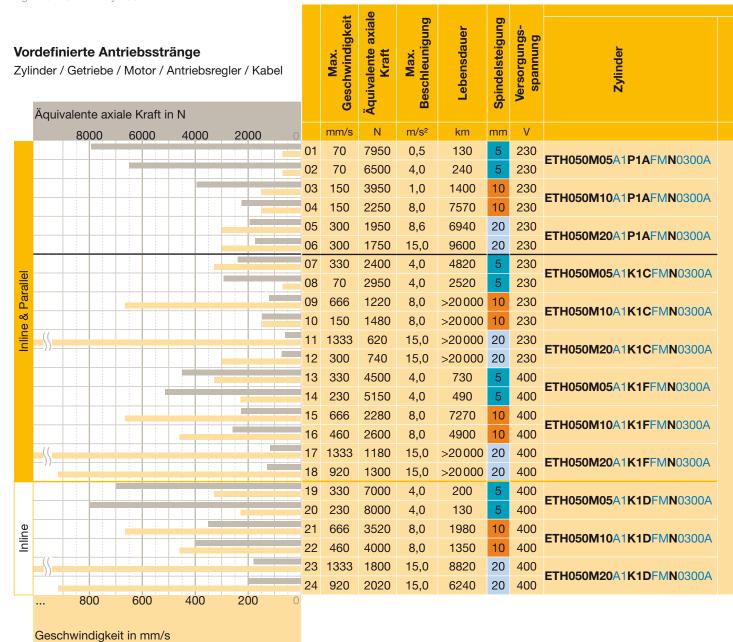
- Betriebsbeiwert = 1,0
- Die Berechnung basiert auf der Annahme: ohne Stillstandszeit (d.h. wenn Stillstandszeiten in der Applikation vorkommen erhöht sich lediglich die Leistungsreserve)
- 40 °C Umgebungstemperatur, mit Getriebe 20 °C Umgebungstemperatur
- bis 1000 m über NN

	Destalleddes						
Getriebe	Bestellcodes O O O O O O O O O O O O O	Antrieb Compax3	Motorkabel	Geberkabel	Antrieb SLVD-N / TPD-M	Motorkabel	Geberkabel
PS60-003-S2/MU60-001	SMH60601,4511 <i>2l65G4</i> 4	C3S025V2F11IxxTxxMxx	_		SLVD2N		
PS60-003-S2/MU60-321	SMH826003814 <i>2l65A7</i> 4	C3S025V2F11IxxTxxMxx	oder MOK54/ (schleppkettentauglich)	(h	SLVD2N		
PS60-003-S2/MU60-001	SMH60601,4511 <i>2l65G4</i> 4	C3S015V4F11IxxTxxMxx	Jep	iglic	TPDM020202		
PS60-003-S2/MU60-321	SMH826003814 <i>2165A7</i> 4	C3S038V4F11IxxTxxMxx	/ (scł	GBK 24/ (schleppkettentauglich)	TPDM05	.:	
	SMH824503814 <i>2l65A7</i> 2		K54	opke		101	3ES
	SMH826003814 <i>2l65A7</i> 4	C3S063V2F11IxxTxxMxx	8	hlep	SLVD5N	CAVOMOT	CAVORES
	SMH60451,4511 <i>2l65G4</i> 2 SMH60601,4511 <i>2l65G4</i> 4	C3S025V2F11IxxTxxMxx		/ (sc	SLVD2N	CA	CA
	SMH824503814 <i>2l65A7</i> 2		ard)	X 24			
ohne Getriebe	SMH826003814 <i>2l65A7</i> 4	C3S063V2F11IxxTxxMxx	(Standard)	GBI	SLVD5N		
	SMH60451,4511 <i>2l65G4</i> 2	C3S025V2F11IxxTxxMxx			SLVD2N		
	SMH824503814 <i>2l65A7</i> 2		(55/		011/ 5 -11		
	SMH826003814 <i>2l65A7</i> 4	C3S063V2F11IxxTxxMxx	MOK55/		SLVD5N		
	SMH60451,4511 <i>2l65G4</i> 2	C3S025V2F11IxxTxxMxx	_		SLVD2N		

Bestellcodes:

fett: muss ausgewählt werden, damit das Paket kombinierbar ist kursive: empfohlen/Standard

blau: muss applikationsbedingt ausgewählt werden


Hinweis: Die hier gezeigten Beispiele dienen als Auslegungshilfe. Da bei solchen Antriebspaketen sehr viele Parameter zusammenspielen hat diese Darstellung keinen Anspruch auf Vollständigkeit.

Vordefinierte Antriebsstränge ETH050 1)

mit Compax3, SLVD-N / TPD-M

Um die Darstellung an dieser Stelle etwas zu vereinfachen, wurden Randbedingungen angenommen, welche ohne Ausnahme bei Ihrer Applikation eingehalten werden müssen, ansonsten kann es sein, dass die hier vorgeschlagenen Produktkombinationen technisch nicht funktionieren. Die Applikation muss dann auf herkömmliche Weise berechnet werden.

¹⁾ gilt nicht für ATEX Zylinder.

Randbedingungen:

- Hub zwischen 50 und 600 mm
- Bewegung in horizontaler Richtung
- Die Leistungsdaten/Kennwerte der Produkte dürfen nicht überschritten werden, wie
 - bei Parallelantrieb: übertragbares Moment in Abhängigkeit von der Motordrehzahl n beachten
 - zulässige axiale Druckkräfte beachten
- Umgebungsbedingungen
- ...
- Lineare Beschleunigung
- Angegebene maximale Beschleunigung = Verzögerungszeiten
- Betriebsbeiwert = 1,0
- Die Berechnung basiert auf der

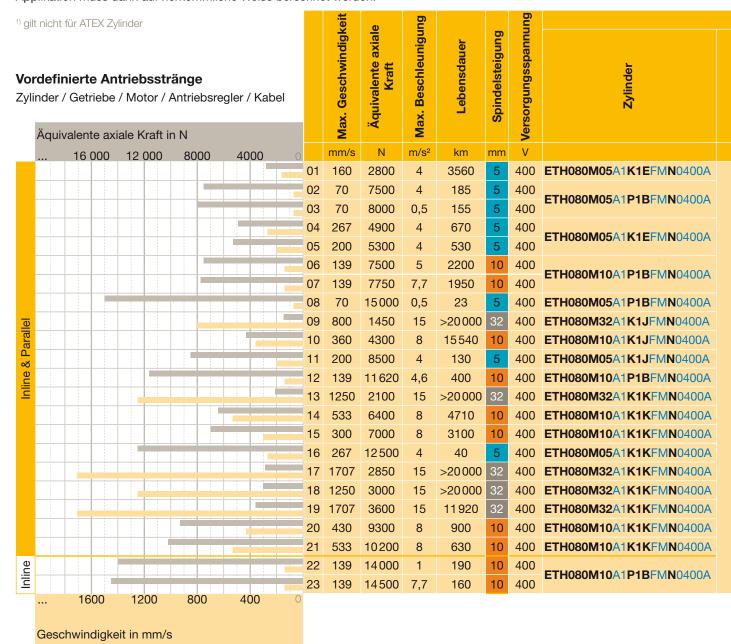
Annahme: ohne Stillstandszeit (d.h. wenn Stillstandszeiten in der Applikation vorkommen erhöht sich lediglich die Leistungsreserve)

- 40 °C Umgebungstemperatur, mit Getriebe 20 °C Umgebungstemperatur
- bis 1000 m über NN

	Bestellcodes						
Getriebe	Motor	Antrieb Compax3	Motorkabel	Geberkabel	Antrieb SLVD-N / TPD-M	Motorkabel	Geberkabel
PS60-003-S2/MU60-321	SMH825603814 <i>2l65A7</i> 4	C3S063V2F 1 1 IxxTxxMxx C3S025V2F 1 1 IxxTxxMxx C3S063V2F 1 1 IxxTxxMxx C3S025V2F 1 1 IxxTxxMxx C3S063V2F 1 1 IxxTxxMxx C3S063V2F 1 1 IxxTxxMxx	MOK55/ (Standard) oder MOK54/ (schleppkettentauglich)		SLVD5N SLVD5N SLVD5N SLVD5N SLVD5N SLVD5N		
	SMH824503814 <i>2l65A7</i> 2	C3S063V2F11IxxTxxMxx	ette		SLVD5N	1	
	SMH821003814 <i>2l65A7</i> 2	C3S025V2F11IxxTxxMxx	opke	<u>운</u>	SLVD2N		
	SMH824503814 <i>2l65A7</i> 2	C3S063V2F11IxxTxxMxx	hlep	uglic	SLVD5N		
	SMH821003814 <i>2l65A7</i> 2	C3S025V2F11IxxTxxMxx	s)	3BK 24/ (schleppkettentauglich)	SLVD2N		
	SMH824503814 <i>2l65A7</i> 2	C3S063V2F11IxxTxxMxx	4/	ette	SLVD5N	٤	.:
alama Oatulala	SMH821003814 <i>2l65A7</i> 2	C3S025V2F11IxxTxxMxx	K 5	ppk	SLVD2N	CAVOMOT	CAVORES
ohne Getriebe	SMH10056065ET2/65A74	C3S075V4F11IxxTxxMxx	M	hle	TPDM05	NO.	N N
	SMH10030065ET2/65A74	C3S038V4F11IxxTxxMxx	der	. (sc	TPDM05	CA	S
	SMH10056065ET2/65A74	C3S075V4F11IxxTxxMxx	00	4	TPDM05		
	SMH10030065ET2/65A74	C3S038V4F11IxxTxxMxx	lard	X	TPDM05		
	SMH10056065ET2/65A74	C3S075V4F11IxxTxxMxx	and	GB	TPDM05		
	SMH10030065ET2/65A74	C3S038V4F11IxxTxxMxx	St.		TPDM05		
	MH1056008919 <i>2l65A7</i> 4	C3S150V4F11IxxTxxMxx	5/		TPDM10		
	MH1053008919 <i>2l65A7</i> 4	C3S075V4F11IxxTxxMxx	K5		TPDM05		
ohne Getriebe	MH1056008919 <i>2l65A7</i> 4	C3S150V4F11IxxTxxMxx	M		TPDM10		
Offile Getflebe	MH1053008919 <i>2l65A7</i> 4	C3S075V4F11IxxTxxMxx			TPDM05		
	MH1056008919 <i>2l65A7</i> 4	C3S150V4F11IxxTxxMxx			TPDM10		
	MH1053008919 <i>2l65A7</i> 4	C3S075V4F11IxxTxxMxx			TPDM05		

Bestellcodes:

fett: muss ausgewählt werden, damit das Paket kombinierbar ist kursive: empfohlen/Standard


blau: muss applikationsbedingt ausgewählt werden

Hinweis: Die hier gezeigten Beispiele dienen als Auslegungshilfe. Da bei solchen Antriebspaketen sehr viele Parameter zusammenspielen hat diese Darstellung keinen Anspruch auf Vollständigkeit.

Vordefinierte Antriebsstränge ETH080 11

mit Compax3, TPD-M

Um die Darstellung an dieser Stelle etwas zu vereinfachen, wurden Randbedingungen angenommen, welche ohne Ausnahme bei Ihrer Applikation eingehalten werden müssen, ansonsten kann es sein, dass die hier vorgeschlagenen Produktkombinationen technisch nicht funktionieren. Die Applikation muss dann auf herkömmliche Weise berechnet werden.

Randbedingungen:

- Hub zwischen 50 und 800 mm
- Bewegung in horizontaler Richtung
- Die Leistungsdaten/Kennwerte der Produkte dürfen nicht überschritten werden, wie
 - bei Parallelantrieb: übertragbares Moment in Abhängigkeit von der Motordrehzahl n beachten
 - zulässige axiale Druckkräfte beachten
 - Umgebungsbedingungen
 - ...

- Lineare Beschleunigung
- Angegebene maximale Beschleunigung = Verzögerungszeiten
- Betriebsbeiwert = 1,0
- Die Berechnung basiert auf der Annahme: ohne Stillstandszeit (d.h. wenn Stillstandszeiten in der Applikation vorkommen erhöht sich lediglich die Leistungsreserve)
- 40 °C Umgebungstemperatur, mit Getriebe 20 °C Umgebungstemperatur
- bis 1000 m über NN

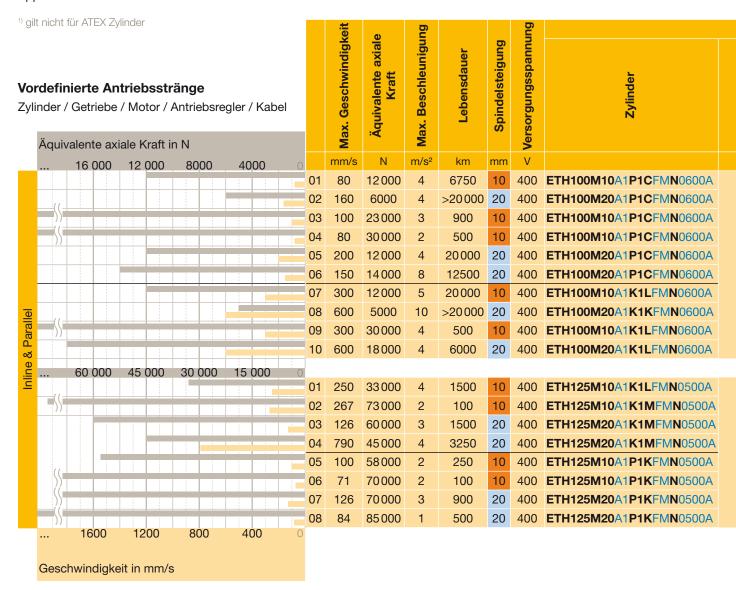
	Bestellcodes						
Getriebe	Motor	Antrieb Compax3	Motorkabel	Geberkabel	Antrieb TPD-M	Motorkabel	Geberkabel
ohne Getriebe	SMH8230035192/65A74	C3S038V4F11IxxTxxMxx			TPDM05		
PS90-003-S2/MU90-085	SMH8256038192/65A74	C3S038V4F11IxxTxxMxx			TPDM05		
P390-003-32/191090-003	SMH823003819 <i>2l65A7</i> 4	C3S038V4F11IxxTxxMxx			TPDM020202		
ohne Getriebe	SMH1005606519 <i>2l65A7</i> 4	C3S075V4F11IxxTxxMxx			TPDM0808		
offile Getriebe	SMH1003006519 <i>2l65A7</i> 4	C3S038V4F11IxxTxxMxx			TPDM05		
	SMH1003006519 <i>2l65A7</i> 4	C3S038V4F11IxxTxxMxx			TPDM05		
PS90-003-S2/MU90-088	SMH10056065192/65A74	C3S075V4F11IxxTxxMxx	0	-	TPDM0808		
	SMH10030065192/65A74	C3S038V4F11IxxTxxMxx		(schleppkettentauglich)	TPDM05		
		C3S075V4F11IxxTxxMxx		tau	TPDM0808		
ohne Getriebe	SMH11530107242/65A74	C3S075V4F11IxxTxxMxx		ten	TPDM0808	١.	
		C3S075V4F11IxxTxxMxx		sket	TPDM0808	OT.	S.
PS90-003-S2/MU90-345	SMH1153010819 <i>2l65A7</i> 4	C3S075V4F11IxxTxxMxx		lepp	TPDM0808	CAVOMOT	CAVORES
	SMH14230155242165A74	C3S150V4F11IxxTxxMxx		sch	TPDM10	¥	¥
	SMH14256155242165A74	C3S150V4F11IxxTxxMxx		- 1	TPDM15	O	O
	SMH14230155242165A74	C3S150V4F11IxxTxxMxx	0	24/	TPDM10		
	SMH14256155242165A74	C3S150V4F11IxxTxxMxx		GBK	TPDM15		
ohne Getriebe	MH14545225243/65A74	C3S300V4F11IxxTxxMxx		ਯ	TPDM30		
	MH14530225243/65A74	C3S150V4F11IxxTxxMxx			TPDM10		
	MH14545285243/65A74	C3S300V4F11IxxTxxMxx	€		TPDM30		
	MH14530225242165A74	C3S150V4F11IxxTxxMxx			TPDM15		
	MH14545285243/65A74	C3S300V4F11IxxTxxMxx			TPDM30		
D000 000 00 (141100 047	SMH1153010819 <i>2l65A7</i> 4	C3S075V4F11IxxTxxMxx			TPDM0808		
PS90-003-S2/MU90-345	SMH1155610819 <i>2l65A7</i> 4	C3S150V4F11IxxTxxMxx	0		TPDM15		

MOK55/... (Standard) oder MOK54/... (schleppkettentauglich)
 MOK56/... (Standard) oder MOK57/... (schleppkettentauglich)
 MOK59/... (Standard) oder MOK64/... (schleppkettentauglich)

Bestellcodes:

fett: muss ausgewählt werden, damit das Paket kombinierbar ist

kursive: empfohlen/Standard


blau: muss applikationsbedingt ausgewählt werden

Hinweis: Die hier gezeigten Beispiele dienen als Auslegungshilfe. Da bei solchen Antriebspaketen sehr viele Parameter zusammenspielen hat diese Darstellung keinen Anspruch auf Vollständigkeit.

Vordefinierte Antriebsstränge ETH100, ETH125 11

mit Compax3, TPD-M

Um die Darstellung an dieser Stelle etwas zu vereinfachen, wurden Randbedingungen angenommen, welche ohne Ausnahme bei Ihrer Applikation eingehalten werden müssen, ansonsten kann es sein, dass die hier vorgeschlagenen Produktkombinationen technisch nicht funktionieren. Die Applikation muss dann auf herkömmliche Weise berechnet werden.

Randbedingungen:

- Hub zwischen 100 und 600 mm
- Bewegung in horizontaler Richtung
- Die Leistungsdaten/Kennwerte der Produkte dürfen nicht überschritten werden, wie
 - bei Parallelantrieb: übertragbares Moment in Abhängigkeit von der Motordrehzahl n heachten
 - zulässige axiale Druckkräfte beachten
 - Umgebungsbedingungen
 - ..

- Lineare Beschleunigung
- Angegebene maximale Beschleunigung = Verzögerungszeiten
- Betriebsbeiwert = 1,0
- Die Berechnung basiert auf der Annahme: ohne Stillstandszeit (d.h. wenn Stillstandszeiten in der Applikation vorkommen erhöht sich lediglich die Leistungsreserve)
- 40 °C Umgebungstemperatur, mit Getriebe 20 °C Umgebungstemperatur
- bis 1000 m über NN

	Bestellcodes						
Getriebe	Motor	Antrieb Compax3	Motorkabel	Geberkabel	Antrieb TPD-M	Motorkabel	Geberkabel
PS115-005-S2/MU115-005	CMU400ECOCEO40ICE A74	C3S075V4F11IxxTxxMxx	•		TPDM0808		
PS115-005-S2/MU115-005 PS115-005-S2/MU115-005		C3S075V4F77IXXTXXMXX	0		TPDM0808		
PS115-005-S2/MU115-005 PS115-004-S2/MU115-026		C3S150V4F11IxxTxxMxx			TPDM05		
PS115-004-S2/MU115-026 PS115-005-S2/MU115-026		C3S150V4F//IXXTXXMXX	0		TPDM15		
PS115-005-S2/MU115-026 PS115-004-S2/MU115-026		C3S150V4F//IXXTXXMXX	0		TPDM15	CAVOMOT	ES.
PS115-004-S2/MU115-026 PS115-005-S2/MU115-026		C3S150V4F//IXXTXXMXX	2	6	TPDM15	Σ	CAVORES.
PS115-005-52/WIU115-026	SMH17030355382/65A74	C3S150V4F//IXXTXXMXX	9		TPDM15	Š	Ä
	MH14545285242/65A74	C3S300V4F11IxxTxxMxx	_		TPDM30	O	0
ohne Getriebe	MH20530905382/65A74	C3H050V4F11IxxTxxMxx	4		TPDIVI30		
	MH20530905382/65A74	C3H050V4F11IxxTxxMxx					
	WIT20330903362103A74	C3H030V4F//IXXIXXIVIXX	•				
	MH20530705383/65A74	C3H090V4F11IxxTxxMxx	B	6			
	MH265301505483M654	C3H090V4F10IxxTxxMxx	6	0			
ohne Getriebe	MH265302205483M654	C3H125V4F10IxxTxxMxx	6	0			
	MH265302205483M654	C3H125V4F10IxxTxxMxx	_	0			
PE700410M1802153880	MH20530285383/65A74	C3S300V4F11IxxTxxMxx	4	6			
PE700510M1802153880	MH20530285383/65A74	C3S300V4F11IxxTxxMxx	4	6			
PE700410M1802153880	MH20530705383/65A74	C3H050V4F11IxxTxxMxx		6			
PE700510M1802153880	MH20530705383/65A74	C3H050V4F11IxxTxxMxx	-	6			
				•			

- MOK55/... (Standard) oder MOK54/... (schleppkettentauglich)
- **❷ MOK56/... (Standard) oder MOK57/...** (schleppkettentauglich)
- **MOK59/... (Standard) oder MOK64/...** (schleppkettentauglich)
- **9** MOK61/...,
- **❷** MOK62/...
- **GBK24/...** (schleppkettentauglich)
- **№ REK42/... (Standard) oder REK41/...** (schleppkettentauglich)

Bestellcodes:

fett: muss ausgewählt werden, damit das Paket kombinierbar ist

kursive: empfohlen/Standard

blau: muss applikationsbedingt ausgewählt werden

Hinweis: Die hier gezeigten Beispiele dienen als Auslegungshilfe. Da bei solchen Antriebspaketen sehr viele Parameter zusammenspielen hat diese Darstellung keinen Anspruch auf Vollständigkeit.

Bestellschlüssel

	1	2	3	4	5	6	7	8	9	10	11	12
Beispiel	ETH	050	M05	Α	1	K1A	F	M	N	0200	Α	Uxx

4	Baur	oiho		5	Ontio	n N	20	her	hmieruna	2), 3)	
'		eine	Elalatra andicada y	9					lotoranbauposition, Gehäuseorientierung,		
	ETH		Elektrozylinder		Nutenor					,	
2	Baug	jroße			1						chmierbohrung
	032		ISO 32	_					(Standard),	(nicht mit Moto	
	050		ISO 50						ETH032	ETH050	ETH080/ETH100/ ETH125
	080		ISO 80	_					A, B, C, D, G,		A, C, G, J
	100		ISO 100		2				H, J, K Nachechmi	H, J, K erbohrung mi	ttig im Profil 12 Uhr
	125	5 ISO 125					ETH080/ETH100/				
3	Spindelsteig		ung Mxx in mm						ETH032	ETH050	ETH125
	M05		für ETH032, ETH050, ETH080		3				A, C, E, G, J		A, C, E, G, J ttig im Profil 3 Uhr
	M10		für ETH032, ETH050, ETH080, ETH100,		<u> </u>						ETH080/ETH100/
			ETH125						ETH032	ETH050	ETH125
	M16		für ETH032							A, C, E, G, J	A, C, E, G, J
	M20		für ETH050, ETH100, ETH125		4				vacnscnmi	erbonrung mi	ttig im Profil 6 Uhr ETH080/ETH100/
	M32		für ETH080						ETH032	ETH050	ETH125
4	Moto	ranbaur	oosition, Gehäuseorientierung,						A, C, E, G, J		A, C, E, G, J
-	Nutenorienti				5				Nachschmi	erbohrung mi	ttig im Profil 9 Uhr
	Α	7	Inline + Nut für Ini 3 & 9 Uhr (Standard)	_					ETH032	ETH050	ETH080/ETH100/ ETH125
	ſ								B, D, F, H, K	A, C, E, G, J	A, C, E, G, J
	В	4/	Inline . Net für lei C 9 10 l lbr	- 6	Moto						
	D		Inline + Nut für Ini 6 & 12 Uhr		Motore					n der Abtriebswe	lle
		2				H03	H08	ETH100	Mit Motorfla	nsch für Parker M	otor:
	С		Parallel 12 Uhr / Nut für Ini 3 & 9 Uhr		1/4 A	_ 65 6		<u> </u>		00/0 MUICO D	T /0
	Í				K1A	-				38/9, MH56-B	
	D		Parallel 12 Uhr / Nut für Ini 6 & 12 Uhr		K1B	•	•		SMH60-E EX3	35/11, MH/0-	B5/11 oder NX3,
	U		Parallel 12 Off / Nut fur fill 6 & 12 Off		1/40		H			20./4.4	
	É	el			K1C	•	•		SMH82-E		. Do /40 / U. I.
	Е		Parallel 3 Uhr / Nut für Ini 3 & 9 Uhr		K1D	•	• •			•	5-B9/19 (alt HJ96
	É				V4E					der NX4, EX4	00 DE (10
	F		Devalled 2 Libr / Next film hai 6 9 10 Libr	_	K1E	•	• •		MH105-E	35/19, SMH10	JU-B5/19,
	Г,		Parallel 3 Uhr / Nut für Ini 6 & 12 Uhr		K1F	Н,	•		SMH100-		
						1	Н	H			NE DE/04
	G		Parallel 6 Uhr / Nut für Ini 3 & 9 Uhr		K1H			•		B5/24, MH10	
	Ę	2			K1J		•	•	EX6	·B7/24, MH10	5-B6/24 oder NX6,
	Н		Parallel 6 Uhr / Nut für Ini 6 & 12 Uhr	_	K1K		+	•		·B5/24, MH14	E DE/04
	(K1L		Ŧ				
			5 W. LOLIN (ALL 100 ALL)							35/38, SMH17	U-D3/36
	J		Parallel 9 Uhr / Nut für Ini 3 & 9 Uhr		K1M				MH265-E		0.111
	k	2			-					flansch für Parker	Getriebe:
	K ,		Parallel 9 Uhr / Nut für Ini 6 & 12 Uhr		P1A	•	-		PS60		
	[2			P1B		•		PS90		
		-			P1C				PS115		
					P1D			•	PS142		
					P1G	•	•		PE3		
					P1H		•		PE4		
					P1J			•	PE5		
					P1K			•	PE7		
					1xx				Sonderfla	ınsch einteilig	(kundenspezifisch)
					Ovv				Candarfla	nooh zuroitoil	-

2xx

wenn Sie einen Flansch für einen Fremdmotor benötigen kontaktieren Sie uns.

Sonderflansch zweiteilig (kundenspezifisch)

7	Montageart	
	F	Gewinde am Zylinderkörper (Standard) (ETH100,ETH125 haben keine Montagegewinde an der Zylinderunterseite)
	В	Fußmontage ^(5), 7) (für ETH100, ETH125 nur in Schutzart Option A verfügbar)
	С	Schwenkflansch mit Achsbolzen 6)
	D	Schwenkzapfen (nicht mit Motoranbauposition E, F, J, K), bei Nachschmieroption "1" ist die Nachschmierbohrung immer auf 6 Uhr
	E	Schwenkflansch mit Bohrung 6)
	G	Montageplatten ⁷⁾ (nur mit Motoranbauposition A, B, C, D) (für ETH100, ETH125 nur in Schutzart Option A verfügbar)
	Н	Endplatte ⁶⁾ (für ETH125 nur in Schutzart Option A verfügbar)
	J	Frontplatte ⁷⁾ (für ETH125 nur in Schutzart Option A verfügbar)
	N	Endplatte & Frontplatte ^{6), 7)} (für ETH125 nur in Schutzart Option A verfügbar)
	X	kundenspezifisch - bitte kontaktieren Sie uns
8	Kolbenstang	e
	М	Außengewinde (Standard)
	F	Innengewinde
	K	Innengewinde (für die Aufnahme des Kraftsensors mit Außengewinde) (nur für ETH100, ETH125)
	С	Gabelkopf ⁸⁾ (bei Schutzart "B" und "C" in VA; bei Schutzart "A" in Standard)
	S	Kugelkopf (bei Schutzart "B" und "C" in VA; bei Schutzart "A" in Standard) (für ETH125 nur in Schutzart Option A verfügbar)
	R	Parallelführung mit Kugelbuchse ⁸⁾ (nicht mit Motoranbauposition E, F, J, K) (nur in Schutzart Option A verfügbar)
	Т	Parallelführung mit Gleitbuchse ⁸⁾ (nicht mit Motoranbauposition E, F, J, K)

10	Hub in mm				
		ETH032	ETH050	ETH080	ETH100/ ETH125
	0050	•	•		
	0100	•	•	•	•
	0150	•	•	•	•
	0200	•	•	•	•
	0300	•	•	•	•
	0400			•	•
	0600			•	•
	1000	•			•
	1200		•		
	1600			•	•
	XXXX	501000	501200	501600	1002000
		kun	denspezifisch	n in mm Schr	itten
11	Schutzart				

11	Schutzart	
	Α	IP54 verzinkte Schrauben
	В	IP54 rostarme Variante mit VA-Schrauben
	С	IP65 wie B + Schutzlacküberzug und speziell abgedichtet

12 Optional (nur kundenspezifische Zylinder) Uxx Unique Version

Hier wird für kundenspezifische Zylinder eine Nummer vergeben, bitte kontaktieren Sie uns

bei ATEX Zyl	bei ATEX Zylindern 9)				
000	Standard ATEX Zylinder				
xxx	Applikationsspezifische ATEX Freigabe xxx ATEX Applikations-Identnummer xxx				

- ¹⁾ ETH080-ETH125 je 2 Nuten auf allen 4 Seiten (d.h. Code B=A, D=C, F=E, H=G, K=J), daher für ETH080-ETH125 nur Code A, C, E, G, J möglich.
- ²⁾ Bei Parallelanbau kann der Motor evt. den Zugang auf Initiatoren und Nachschmierbohrung verhindern.
- Bei Wahl der Nachschmieroptionen 2-5 hat die Standard Nachschmierbohrung keine Funktion.
- Zylinder-Motor/Getriebe-Kombination bitte mittels Tabelle überprüfen ("Motoranbauoptionen" siehe Seite 22).
- 5) Bestellcode SMH100-B5/14: "SMH100_____ET..." (der Motorwellendurchmesser wird durch die Bezeichnung "ET" ersetzt), (nicht im Motorenkatalog) nur mit Feedback: Resolver, A7
- 6) Nicht bei Motoranbauoption A & B.
- 7) Nicht bei Kolbenstange R, T
- 8) Nicht für ETH100, ETH125
- ⁹⁾ Beachten Sie die Erläuterungen "ETH Elektrozylinder für ATEX Umgebung" siehe Seite 12

Software & Tools

Option N

L

Χ

Α

9

- Aktuatordatenbank
 - Im Compax3 ServoManager steht eine spezielle Aktuatordatenbank zur Verfügung. Sie können einfach den ETH-Typenschlüssel eingeben und der Regler parametriert sich selbst.
- CAD-Konfigurator
 - Konfigurieren Sie die CAD Daten für Ihren Elektrozylinder online. www.parker.com/eme/de/eth

Flexible Kupplung

Standard

(nur in Schutzart Option A verfügbar)

Kennzeichnung für ATEX-Zylinder 9)

kundenspezifisch - bitte kontaktieren Sie

- Auslegungstool "EL-Sizing"
 - Eine weitere Vereinfachung der Auslegung bieten wir mit einem Auslegungstool. www.parker.com/eme/de/eth

Wir von Parker setzen alles daran, die Produktivität und die Rentabilität unserer Kunden zu steigern, indem wir die für ihre Anforderungen besten Systemlösungen entwickeln. Gemeinsam mit unseren Kunden finden wir stets neue Wege der Wertschöpfung. Auf dem Gebiet der Antriebs- und Steuerungstechnologien hat Parker die Erfahrung, das Know-how und qualitativ hochwertige Komponenten, die weltweit verfügbar sind. Kein anderer Hersteller bietet eine so umfangreiche Produktpalette in der Antriebs- und Steuerungstechnologie wie Parker. Weitere Informationen erhalten Sie unter der kostenlosen Rufnummer 00800 27 27 5374

Antriebs- und Steuerungstechnologien von Parker

Luft- und Raumfahrt

Aftermarket-Services

Frachtverkehr Motoren

Geschäftsflugverkehr und allgemeine Luftfahrt

Helikopter

Raketenwerfer-Fahrzeuge

Militärflugzeuge

Energieerzeugung

Regionale Transporte Unbemannte Flugzeuge

Schlüsselprodukte

Fluasteuerungssysteme und Antriebskomponenten Motorsysteme und -komponenten Fluidleitungssysteme und -komponenten Fluid-Durchflussmessungs- und Zerstäubungsgeräte Kraftstoffsysteme und -komponenten Inertisierung für Tanksysteme Hydrauliksysteme und -komponenten Wärmemanagement Räder und Bremsen

Kälte-Klimatechnik

Landwirtschaft Klimatechnik

Baumaschinen

Lehensmittelindustrie Industrielle Maschinen und Anlagen

Life Sciences

Öl und Gas

Präzisionskühlung

Prozesstechnik

Kältetechnik

Transportweser

Schlüsselprodukte

Akkumulatoren Aktuatoren

CO₂-Regler

Elektronische Steuerungen

Filtertrockner

Handabsperrventile

Wärmetauscher

Schläuche und Anschlüsse Druckregelventile

Sicherheitsventile

Pumpen

Magnetventile

Thermostatische Expansionsventile

Elektromechanik

Luft- und Raumfahrt Industrielle Automation

Life Science und Medizintechnik

Werkzeugmaschiner

Verpackungsmaschinen

Papiermaschinen Kunststoffmaschinen und Materialumformung

Metallgewinnung

Halbleiter und elektronische Industrie

Textilindustrie

Draht und Kabel

Schlüsselprodukte

AC/DC-Antriebe und -Systeme Flektromechanische Aktuatoren Handhabungssysteme und Führungen

Elektrohydrostatische Antriebssysteme Elektromechanische Antriebssysteme

Bediengeräte Linearmotoren

Schrittmotoren, Servomotoren, Antriebe und

Profile

Filtration

Schlüsselmärkte

Luft- und Raumfahrt

Lebensmittelindustrie Anlagen und Ausrüstung für die Industrie

Life Sciences Schifffahrt

Mobile Ausrüstung

Öl und Gas

Stromerzeugung und erneuerbare Energien Prozesstechnik

Transportweser

Wasserreinigung

Schlüsselprodukte

Analytische Gaserzeuger

Druckluftfilter und Trockner

Motorsaugluft-, Kühlmittel-, Kraftstoff- und

Ölfilterungssysteme Systeme zur Überwachung des

Flüssigkeitszustands

Hydraulik- und Schmiermittelfilter Stickstoff-, Wasserstoff- und Null-Luft-

Generatoren

Instrumentenfilter

Membran- und Faserfilter

Mikrofiltration

Sterilluftfiltration

Wasserentsalzung, Reinigungsfilter

Schlüsselmärkte

Alternative Kraftstoffe

Öl und Gas

Energieerzeugung Zellstoff und Papier

Stahl

Wasser/Abwasser

Schlüsselprodukte

Produkte und Systeme zur Bearbeitung analytischer Proben

Anschlüsse, Ventile und Pumpen für die Leitung von Fluorpolymeren

Rohrverschraubungen

Anschlüsse, Ventile, Regler und Mehrwegeventile für die Prozesssteuerung

Dichtung & Abschirmung

Luft- und Raumfahrt Chemische Verarbeitung Gebrauchsgüter

Fluidtechnik Industrie allgemein

Informationstechnologie

Life Sciences Mikro-Elektronik

Militär

Öl und Gas Energieerzeugung

Erneuerbare Energien Telekommunikation Transportwesen

Schlüsselprodukte

Dvnamische Dichtungen

Entwicklung und Montage von elektromedizinischen Instrumenten

EMV-Abschirmung

Extrudierte und präzisionsgeschnittene/gefertigte Elastomerdichtungen Hochtemperatur-Metalldichtungen

Homogene und eingefügte Elastomerformen

Fertigung und Montage von medizinischen

Metall- und Kunststoff- Verbundstoff- Dichtungen

Silikonrohre und -profile Wärmeleitmaterialien Schwingungsdämpfer

Fluidtechnik

Schlüsselmärkte Hebezeuge Landwirtschaft Chemie und Petrochemie Baumaschinen Lebensmittelindustrie Kraftstoff- und Gasleitung Industrielle Anlagen Life Sciences Schifffahrt Bergbau Mobile Ausrüstung

Öl und Gas Erneuerbare Energien

Transportwesen

Schlüsselprodukte Rückschlagventile Verbindungstechnik für Niederdruck Fluid-Leitungssysteme Versorgungsleitungen für Tiefseebohrungen Diagnoseausrüstung Schlauchverbinder Schläuche für industrielle Anwendungen Ankersysteme und Stromkabel PTFE-Schläuche und -Rohre Schnellverschlusskupplungen Gummi- und Thermoplastschläuche Rohrverschraubungen und Adapter

Rohr- und Kunststoffanschlüsse

Hydraulik

Hebezeuge Landwirtschaft Alternative Energien Baumaschinen Forstwirtschaft Industrielle Anlagen Werkzeugmaschinen Schifffahrt Materialtransport Bergbau Öl und Gas Energieerzeugung Müllfahrzeuge Erneuerbare Energien

Rasenpflegegeräte

LKW-Hydraulik

Schlüsselprodukte Akkumulatoren Einbauventile Flektrohydraulische Antriebe Bediengeräte Hybridantriebe Hydraulik-Zylinder Hydraulik-Motore und -Pumpen Hydrauliksysteme Hydraulikventile & -steuerungen Hydrostatische Steuerung Integrierte Hydraulikkreisläufe Nebenantriebe Antriebsaggregate

Sensoren

Schlüsselmärkte Luft- und Raumfahrt Industrielle Automation Life Science und Medizintechnik Werkzeugmaschinen Verpackungsmaschinen

Druckluft-Aufbereitung Messinganschlüsse und -ventile Verteilerblöcke Pneumatik-Zubehör Pneumatik-Antriebe und -Greifer

Pneumatik

Förderanlagen und Materialtransport Transportwesen & Automobilindustrie

Pneumatik-Ventile und -Steuerungen Schnellverschluss-Kupplungen

Schlüsselprodukte

Gummi. Thermoplastschläuche und Anschlüsse Thermoplastrohre und -anschlüsse Vakuumerzeuger, -sauger und -sensoren

Prozesssteuerung

Rionharmazeutika Chemische Industrie und Raffinerien Lebensmittelindustrie Marine und Schiffsbau Medizin und Zahntechnik Nuklearenergie Offshore-Ölförderung Pharmazeutika

Analysegeräte

Anschlüsse und Ventile zur chemischen

Anschlüsse, Ventile, Regler und digitale Durchflussrealer für die Leitung hochreiner

Industrielle Mengendurchflussmesser/-regler Permanente nicht verschweißte

Industrielle Präzisionsregler und Durchflussregler Doppelblock- und Ablassventile für die Prozesssteuerung

Parker weltweit

Europa, Naher Osten, Afrika

AE – Vereinigte Arabische Emirate, Dubai

Tel: +971 4 8127100 parker.me@parker.com

AT – Österreich, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Osteuropa, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Aserbaidschan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgien, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BG - Bulgarien, Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

BY - Weißrussland, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH - Schweiz, Etoy, Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Tschechische Republik, Klecany

Tel: +420 284 083 111

parker.czechrepublic@parker.com

DE - Deutschland, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Dänemark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spanien, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finnland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – Frankreich, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Griechenland, Athen Tel: +30 210 933 6450 parker.greece@parker.com

HU – Ungarn, Budaörs Tel: +36 23 885 470 parker.hungary@parker.com

IE – Irland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT - Italien, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kasachstan, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL - Niederlande, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norwegen, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Polen, Warschau Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Rumänien, Bukarest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russland, Moskau Tel: +7 495 645-2156 parker.russia@parker.com

SE - Schweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK – Slowakei, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slowenien, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Türkei, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiew Tel +380 44 494 2731 parker.ukraine@parker.com

UK – Großbritannien, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com **ZA – Republik Südafrika,** Kempton Park Tel: +27 (0)11 961 0700

Nordamerika

CA - Kanada, Milton, Ontario Tel: +1 905 693 3000

parker.southafrica@parker.com

US - USA, Cleveland Tel: +1 216 896 3000

Asien-Pazifik

AU – Australien, Castle Hill Tel: +61 (0)2-9634 7777

CN – China, Schanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN - Indien, Mumbai Tel: +91 22 6513 7081-85

JP - Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ - Neuseeland, Mt Wellington

Tel: +64 9 574 1744

SG - Singapur Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 186 7000-99

TW - Taiwan, Taipei Tel: +886 2 2298 8987

Südamerika

AR – Argentinien, Buenos Aires Tel: +54 3327 44 4129

BR - Brasilien, Sao Jose dos Campos

Tel: +55 800 727 5374

CL – Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Toluca Tel: +52 72 2275 4200

Europäisches Produktinformationszentrum Kostenlose Rufnummer: 00 800 27 27 5374 (von AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

Technische Änderungen vorbehalten. Daten entsprechen dem technischen Stand zum Zeitpunkt der Drucklegung. © 2014 Parker Hannifin Corporation.

Alle Rechte vorbehalten.

Parker Hannifin GmbH
Pat-Parker-Platz 1
41564 Kaarst
Tel.: +49 (0)2131 4016 0
Fax: +49 (0)2131 4016 9199
parker.germany@parker.com

www.parker.com

190-550017N8

Juni 2014